0000000000242796
AUTHOR
Masahiro Miyakawa
Boolean Functions with a Low Polynomial Degree and Quantum Query Algorithms
The complexity of quantum query algorithms computing Boolean functions is strongly related to the degree of the algebraic polynomial representing this Boolean function. There are two related difficult open problems. First, Boolean functions are sought for which the complexity of exact quantum query algorithms is essentially less than the complexity of deterministic query algorithms for the same function. Second, Boolean functions are sought for which the degree of the representing polynomial is essentially less than the complexity of deterministic query algorithms. We present in this paper new techniques to solve the second problem.
Complexity of decision trees for boolean functions
For every positive integer k we present an example of a Boolean function f/sub k/ of n = (/sub k//sup 2k/) + 2k variables, an optimal deterministic tree T/sub k/' for f/sub k/ of complexity 2k + 1 as well as a nondeterministic decision tree T/sub k/ computing f/sub k/. with complexity k + 2; thus of complexity about 1/2 of the optimal deterministic decision tree. Certain leaves of T/sub k/ are called priority leaves. For every input a /spl isin/ {0, 1}/sup n/ if any of the parallel computation reaches a priority leaves then its label is f/sub k/ (a). If the priority leaves are not reached at all then the label on any of the remaining leaves reached by the computation is f/sub k/. (a).