0000000000242813
AUTHOR
V. Cassio
Measurement of the forward-backward asymmetry of e(+)e(-)-]z-]b(b)over-bar using prompt leptons and a lifetime tag
The forward-backward asymmetry of the process e+e-→Z→b {Mathematical expression} has been measured using events collected by the DELPHI experiment during the 1991 and 1992 LEP runs. This data sample corresponded to 884 000 hadronic Z decays at a centre-of-mass energy {Mathematical expression}. The tagging of b-quark events was performed using two approaches; the first was based on the semileptonic decay channels b→X+μ and b→X+e, the second used a lifetime tag with jet-charge reconstruction. The results of these two methods were combined to give {Mathematical expression} With the semileptonic sample, the forward-backward asymmetry of the process e+e-→Z→ {Mathematical expression} was also mea…
Observation of orbitally excited B mesons
Experimental evidence for the existence of orbitally excited B meson states is presented in an analysis of the BÏ and B*Ï distribution of Q = m(B**) - m(B(*)) - m(Ï) using Z0decay data taken with the DELPHI detector at LEP. The mean Q-value of the decays B**â B(*)Ï is measured to be 284 ± 5 (stat.) ± 15 (syst.) MeV/c2, and the Gaussian width of the signal is 79 ± 5 (stat.) ± 8 (syst.) MeV/c2. This signal can be described as a single resonance of mass m = 5732 ± 5 (stat.) ± 20 (syst.) MeV/c2and full width Î = 145 ± 28 MeV/c2. The observed shape is also consistent with the production of several broad and narrow states as predicted by the quark model and partly observed in the D-…
FIRST MEASUREMENT OF THE STRANGE QUARK ASYMMETRY AT THE Z(0) PEAK
A measurement of the strange quark forward-backward asymmetry at the Z0 peak was performed using 718,000 multihadronic Z0 decays collected by the DELPHI detector at LEP in 1992. The s-quark was tagged by the presence of high momentum charged kaons identified by the Ring Imaging Cherenkov detector and by Λ0;s decaying into pπ-. The s-quark purity obtained was estimated for the two hadrons to be 43%. The average s-quark asymmetry was found to be 0.131±0.035 (stat.) ±0.013 (syst.). The forward-backward asymmetry was measured for unresolved d-and s-quarks, tagged by the detection of a high energy neutron or neutral kaon in the Hadron Calorimeter. The combined d-and s-quark purity was 69% and th…
Measurements of the tau polarisation in Z0 decays
A sample of Z0→τ+τ- events observed in the DELPHI detector at LEP in 1991 and 1992 is analysed to measure the τ polarisation in the exclusive decay channels {Mathematical expression}, {Mathematical expression}, πν, ρν and a1ν. The τ polarisation is also measured with an inclusive hadronic analysis which benefits from a higher efficiency and a better systematic precision than the use of the exclusive decay modes. The results have been combined with those published on the 1990 data. A measurement of the τ polarisation as a function of production angle yields the values for the mean τ polarisation 〈P〉τ=-0.148±0.022 and for the Z0 polarisation PZ=-0.136±0.027. These results are used to determin…
Strange baryon production in Z hadronic decays
A study of the production of strange octet and decuplet baryons in hadronic decays of the Z recorded by the DELPHI detector at LEP is presented. This includes the first measurement of the ∑± average multiplicity. The total and differential cross sections, the event topology and the baryon-antibaryon correlations are compared with current hadronization models. © 1995 Springer-Verlag.
MEASUREMENT OF THE FORWARD-BACKWARD ASYMMETRY OF CHARM AND BOTTOM QUARKS AT THE Z-POLE USING D-ASTERISK(+/-)-MESONS
The forward-backward asymmetries for the processes $$e^ + e^ - \to c\bar c$$ and $$e^ + e^ - \to b\bar b$$ at theZ resonance are measured using identifiedD *± mesons. In 905,000 selected hadronic events, taken in 1991 and 1992 with the DEL-PHI detector at LEP, 4757D *+→D 0π+ decays are reconstructed. Thec andb quark forward-backward asymmetries are determined to be: $$\begin{gathered} A_{FB}^{c\bar c} = 0.077 \pm 0.029(stat) \pm 0.012(sys), \hfill \\ A_{FB}^{b\bar b} = 0.059 \pm 0.062(stat) \pm 0.024(sys). \hfill \\ \end{gathered} $$ Constraining theb asymmetry to the value measured by DELPHI using independent analyses, the charm asymmetry is determined to be: $$A_{FB}^{c,const} = 0.068 \pm…