0000000000242957
AUTHOR
Heike Löffler-mary
Sequence-Specific Repression of Cotranslational Translocation of the Hepatitis B Virus Envelope Proteins Coincides with Binding of Heat Shock Protein Hsc70
AbstractThe large L envelope protein of the hepatitis B virus has the peculiar capacity to adopt two transmembrane topologies. The N-terminal preS domain of L initially remains in the cytosol while the S domain is cotranslationally inserted into the endoplasmic reticulum membrane. The preS region of about half of the L molecules is posttranslationally translocated to the lumenal space. We now demonstrate that the repression of cotranslational translocation of preS is conferred by a preS1-specific sequence. By analysis of L deletion mutants, the cytosolic anchorage determinant was mapped to amino acid sequence 70 to 94 of L. The intrinsic potential of this determinant to suppress cotranslati…
Chaperones Involved in Hepatitis B Virus Morphogenesis
Little is known about host cell factors necessary for hepatitis B virus (HBV) assembly which involves envelopment of cytosolic nucleocapsids by the S, M and L transmembrane viral envelope proteins and subsequent budding into intraluminal cisternae. Central to virogenesis is the L protein that mediates hepatocyte receptor binding and envelopment of capsids. To serve these topologically conflicting roles, L protein exhibits an unusual dual membrane topology, disposing its N-terminal preS domain inside and outside of the virion lipid envelope. The mixed topology is achieved by posttranslational preS translocation of about half of the L protein molecules across a post-endoplasmic reticulum memb…
Hepatitis B virus assembly is sensitive to changes in the cytosolic S loop of the envelope proteins.
Among the three related L, M, and S envelope proteins of the hepatitis B virus (HBV), the L and S polypeptides are required for virion production. Whereas the pivotal function of the pre-S region of L in nucleocapsid envelopment has been established, the contribution of its S domain and the S protein is less clear. In this study, we evaluated the role of the cytosolic S loop, common to L and S, in HBV assembly by performing mutagenesis experiments. To distinguish between the effect of the mutations on either envelope or virion formation, we investigated the ability of the mutants to assemble into secretable subviral empty envelopes and to replace the wild-type proteins in virion maturation,…