0000000000243017
AUTHOR
Oldamur Hollóczki
Ambident PCN Heterocycles: N- and P-Phosphanylation of Lithium 1,3-Benzazaphospholides
Synthetic and structural aspects of the phosphanylation of 1,3-benzazaphospholides 1(Li), ambident benzofused azaphosphacyclopentadienides, are presented. The unusual properties of phospholyl-1,3,2-diazaphospholes inspired us to study the coupling of 1(Li) with chlorodiazaphospholene 2, which led to the N-substituted product 3. Reaction of 1(Li) with chlorodiphenyl- and chlorodicyclohexylphosphane likewise gave N-phosphanylbenzazaphospholes 4 and 5, whereas with the more bulky di-tert-butyl- and di-1-adamantylchlorophosphanes, the diphosphanes 6 and 7 are obtained; in the case of 7 they are isolated as a dimeric LiCl(THF) adduct. Structural information was provided by single-crystal X-ray d…
Interfacial Domain Formation Enhances Electrochemical Synthesis.
The electroorganic C,C coupling of phenols to other aryl components is controlled by the fluoroalcohol-alcohol mixture solvents. Classical molecular dynamics and static density functional theory reveal that both kinds of solvents interact with the substrates, influencing the electronic structure of a phenoxyl radical intermediate in a cooperative manner to achieve maximal efficiency and selectivity. Simulations of the electrolyte-electrode interface showed that the substrates adsorb on the diamond surface in such a way that the repulsive fluorous-lipophilic interactions can be minimized and the attractive lipophilic-lipophilic interplay can be maximized, whereas the advantageous hydrogen bo…
Ambident Reactivity of P˭CH‒N‒Heterocycles: Lithiation and Substitution Sites
Abstract Benzofused 1H-1,3-azaphospholes are lithiated at the N-atom by tBuLi but phosphinylation takes place at either the N- or the P-atom. Smaller chlorophosphines react at nitrogen, bulkier react at phosphorus. Substituents at C2 promote the latter mode. N-Substituted 2H-1,3-benzazaphospholes undergo CH-metalation or addition at the P˭C bond, depending on the conditions, and allow access to 2-functionally substituted benzazaphospholes or their 2,3-dihydro derivatives, new σ2P,X or σ3P,X hybrid ligands (X=O,P).
The Catalytic Effect of Fluoroalcohol Mixtures Depends on Domain Formation
In the present contribution, we investigated catalytically active mixtures of 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) and aqueous H2O2 by molecular dynamics simulations. It is clearly observable that the HFIP molecule strongly binds to the H2O2, which is necessary for the desired catalytic reaction to occur. Upon the addition of the substrate cyclooctene to the solution, this interaction is enhanced, which suggests that the catalytic activity is increased by the presence of the hydrocarbon. We could clearly observe the microheterogeneous structure of the mixture, which is the result of the separation of the hydroxyl groups, water, and H2O2 from the fluorinated alkyl moiety in the form of l…