0000000000243185
AUTHOR
Silke Ospelkaus
Roadmap on STIRAP applications
STIRAP (stimulated Raman adiabatic passage) is a powerful laser-based method, usually involving two photons, for efficient and selective transfer of populations between quantum states. A particularly interesting feature is the fact that the coupling between the initial and the final quantum states is via an intermediate state, even though the lifetime of the latter can be much shorter than the interaction time with the laser radiation. Nevertheless, spontaneous emission from the intermediate state is prevented by quantum interference. Maintaining the coherence between the initial and final state throughout the transfer process is crucial. STIRAP was initially developed with applications in …
Two-photon optical shielding of collisions between ultracold polar molecules
We propose a method to engineer repulsive long-range interactions between ultracold ground-state molecules using optical fields, thus preventing short-range collisional losses. It maps the microwave coupling recently used for collisional shielding onto a two-photon transition, and takes advantage of optical control techniques. In contrast to one-photon optical shielding [Phys. Rev. Lett. 125, 153202 (2020)], this scheme avoids heating of the molecular gas due to photon scattering. The proposed protocol, exemplified for 23Na39K, should be applicable to a large class of polar diatomic molecules.