0000000000243186

AUTHOR

Gunther Wichmann

Roadmap on STIRAP applications

STIRAP (stimulated Raman adiabatic passage) is a powerful laser-based method, usually involving two photons, for efficient and selective transfer of populations between quantum states. A particularly interesting feature is the fact that the coupling between the initial and the final quantum states is via an intermediate state, even though the lifetime of the latter can be much shorter than the interaction time with the laser radiation. Nevertheless, spontaneous emission from the intermediate state is prevented by quantum interference. Maintaining the coherence between the initial and final state throughout the transfer process is crucial. STIRAP was initially developed with applications in …

research product

Spatial hole burning in thin-disk lasers and twisted-mode operation.

Spatial hole burning prevents single-frequency operation of thin-disk lasers when the thin disk is used as a folding mirror. We present an evaluation of the saturation effects in the disk for disks acting as end-mirrors and as folding-mirrors explaining one of the main obstacles towards single-frequency operation. It is shown that a twisted-mode scheme based on a multi-order quarter-wave plate combined with a polarizer provides an almost complete suppression of spatial hole burning and creates an additional wavelength selectivity that enforces efficient single-frequency operation.

research product

Multipass amplifiers with self-compensation of the thermal lens

We present a novel architecture for a multi-pass amplifier based on a succession of optical Fourier transforms and short propagations that shows a superior stability for variations of the thermal lens compared to state-of-the-art 4f-based amplifiers. We found that the proposed multi-pass amplifier is robust to variations of the active medium dioptric power. The superiority of the proposed architecture is demonstrated by analyzing the variations of the size and divergence of the output beam in form of a Taylor expansion around the design value for variations of the thermal lens in the active medium. The dependence of the output beam divergence and size is investigated also for variations of …

research product