0000000000243186

AUTHOR

Gunther Wichmann

showing 3 related works from this author

Roadmap on STIRAP applications

2019

STIRAP (stimulated Raman adiabatic passage) is a powerful laser-based method, usually involving two photons, for efficient and selective transfer of populations between quantum states. A particularly interesting feature is the fact that the coupling between the initial and the final quantum states is via an intermediate state, even though the lifetime of the latter can be much shorter than the interaction time with the laser radiation. Nevertheless, spontaneous emission from the intermediate state is prevented by quantum interference. Maintaining the coherence between the initial and final state throughout the transfer process is crucial. STIRAP was initially developed with applications in …

PhotonAtomic Physics (physics.atom-ph)Digital storageStimulated Raman adiabatic passage02 engineering and technologyStimulated Raman adiabatic passage (STIRAP)01 natural scienceslaw.inventionPhysics - Atomic PhysicsFTIR SPECTROSCOPYstimulated Raman adiabatic passage (STIRAP)lawStereochemistryRare earthsStatistical physicsMetal ionsmolecular Rydberg statesQCparity violationPhysicseducation.field_of_studyQuantum PhysicsElectric dipole momentsCoherent population transfer021001 nanoscience & nanotechnologyCondensed Matter Physicsacoustic waves; molecular Rydberg states; nuclear coherent population transfer; parity violation; spin waves; stimulated Raman adiabatic passage (STIRAP); ultracold moleculesADIABATIC PASSAGEAtomic and Molecular Physics and OpticsChemical DynamicsMolecular beamsVIOLATING ENERGY DIFFERENCEResearch group A. Pálffy – Division C. H. KeitelStimulated emission0210 nano-technologyCoherence (physics)Experimental parametersPopulationFOS: Physical sciencesacoustic waves530spin wavesMolecular Rydberg statesELECTROMAGNETICALLY INDUCED TRANSPARENCYSINGLE PHOTONSQuantum statePhysics - Chemical Physics0103 physical sciencesUltracold moleculesSpontaneous emissionddc:530Nuclear coherent population transfer010306 general physicseducationStimulated Raman adiabatic passageChemical Physics (physics.chem-ph)Rare-earth-ion doped crystalsPhotonsQuantum opticsnuclear coherent population transferBROAD-BANDControlled manipulationsPOLAR-MOLECULESMoleculesRydberg statesLaserSuperconducting quantum circuitAcoustic wavesParity violationstimulated Raman adiabatic passage (STIRAP); ultracold molecules; parity violation; spin waves; acoustic waves; molecular Rydberg states; nuclear coherent population transferDewey Decimal Classification::500 | Naturwissenschaften::530 | Physikultracold moleculesQuantum Physics (quant-ph)QUANTUM GASSpin waves
researchProduct

Spatial hole burning in thin-disk lasers and twisted-mode operation.

2018

Spatial hole burning prevents single-frequency operation of thin-disk lasers when the thin disk is used as a folding mirror. We present an evaluation of the saturation effects in the disk for disks acting as end-mirrors and as folding-mirrors explaining one of the main obstacles towards single-frequency operation. It is shown that a twisted-mode scheme based on a multi-order quarter-wave plate combined with a polarizer provides an almost complete suppression of spatial hole burning and creates an additional wavelength selectivity that enforces efficient single-frequency operation.

PhysicsHigh power lasersbusiness.industryWavelength selectivityFOS: Physical sciences02 engineering and technologyPolarizerLaser01 natural sciencesAtomic and Molecular Physics and Opticslaw.invention010309 optics020210 optoelectronics & photonicsOpticsThin disklaw0103 physical sciences0202 electrical engineering electronic engineering information engineeringElectrical and Electronic EngineeringbusinessEngineering (miscellaneous)Saturation (magnetic)Physics - OpticsOptics (physics.optics)Applied optics
researchProduct

Multipass amplifiers with self-compensation of the thermal lens

2018

We present a novel architecture for a multi-pass amplifier based on a succession of optical Fourier transforms and short propagations that shows a superior stability for variations of the thermal lens compared to state-of-the-art 4f-based amplifiers. We found that the proposed multi-pass amplifier is robust to variations of the active medium dioptric power. The superiority of the proposed architecture is demonstrated by analyzing the variations of the size and divergence of the output beam in form of a Taylor expansion around the design value for variations of the thermal lens in the active medium. The dependence of the output beam divergence and size is investigated also for variations of …

Materials scienceApertureFOS: Physical sciences02 engineering and technology01 natural scienceslaw.invention010309 opticssymbols.namesakeOpticslaw0103 physical sciencesElectrical and Electronic EngineeringDivergence (statistics)Engineering (miscellaneous)[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryAmplifier021001 nanoscience & nanotechnologyAtomic and Molecular Physics and OpticsPower (physics)Lens (optics)Fourier transformsymbols0210 nano-technologybusinessBeam (structure)Beam divergenceOptics (physics.optics)Physics - Optics
researchProduct