0000000000243193
AUTHOR
Adriana Pálffy
Internal conversion from excited electronic states of $^{229}{\mathrm Th}$ ions
The process of internal conversion from excited electronic states is investigated theoretically for the case of the vacuum-ultraviolet nuclear transition of $^{229}{\mathrm Th}$. Due to the very low transition energy, the $^{229}{\mathrm Th}$ nucleus offers the unique possibility to open the otherwise forbidden internal conversion nuclear decay channel for thorium ions via optical laser excitation of the electronic shell. We show that this feature can be exploited to investigate the isomeric state properties via observation of internal conversion from excited electronic configurations of ${\mathrm Th}^+$ and ${\mathrm Th}^{2+}$ ions. A possible experimental realization of the proposed scena…
Roadmap on STIRAP applications
STIRAP (stimulated Raman adiabatic passage) is a powerful laser-based method, usually involving two photons, for efficient and selective transfer of populations between quantum states. A particularly interesting feature is the fact that the coupling between the initial and the final quantum states is via an intermediate state, even though the lifetime of the latter can be much shorter than the interaction time with the laser radiation. Nevertheless, spontaneous emission from the intermediate state is prevented by quantum interference. Maintaining the coherence between the initial and final state throughout the transfer process is crucial. STIRAP was initially developed with applications in …
Internal conversion from excited electronic states of 229Th ions
The process of internal conversion from excited electronic states is investigated theoretically for the case of the vacuum-ultraviolet nuclear transition of 229Th. Due to the very low transition energy, the 229Th nucleus offers the unique possibility to open the otherwise forbidden internal conversion nuclear decay channel for thorium ions via optical laser excitation of the electronic shell. We show that this feature can be exploited to investigate the isomeric state properties via observation of internal conversion from excited electronic configurations of Th+ and Th2+ ions. A possible experimental realization of the proposed scenario at the nuclear laser spectroscopy facility IGISOL in J…
Energy of the $^{229}$Th nuclear clock transition
The first nuclear excited state of $^{229}$Th offers the unique opportunity for laser-based optical control of a nucleus. Its exceptional properties allow for the development of a nuclear optical clock which offers a complementary technology and is expected to outperform current electronic-shell based atomic clocks. The development of a nuclear clock was so far impeded by an imprecise knowledge of the energy of the $^{229}$Th nuclear excited state. In this letter we report a direct excitation energy measurement of this elusive state and constrain this to 8.28$\pm$0.17 eV. The energy is determined by spectroscopy of the internal conversion electrons emitted in-flight during the decay of the …
Internal conversion from excited electronic states of 229Th ions
The process of internal conversion from excited electronic states is investigated theoretically for the case of the vacuum-ultraviolet nuclear transition of 229 Th . Due to the very low transition energy, the 229 Th nucleus offers the unique possibility to open the otherwise forbidden internal conversion nuclear decay channel for thorium ions via optical laser excitation of the electronic shell. We show that this feature can be exploited to investigate the isomeric state properties via observation of internal conversion from excited electronic configurations of Th + and Th 2 + ions. A possible experimental realization of the proposed scenario at the nuclear laser spectroscopy facility IGISO…