0000000000243208

AUTHOR

Stefano Longhi

0000-0002-8739-3542

showing 6 related works from this author

Roadmap on STIRAP applications

2019

STIRAP (stimulated Raman adiabatic passage) is a powerful laser-based method, usually involving two photons, for efficient and selective transfer of populations between quantum states. A particularly interesting feature is the fact that the coupling between the initial and the final quantum states is via an intermediate state, even though the lifetime of the latter can be much shorter than the interaction time with the laser radiation. Nevertheless, spontaneous emission from the intermediate state is prevented by quantum interference. Maintaining the coherence between the initial and final state throughout the transfer process is crucial. STIRAP was initially developed with applications in …

PhotonAtomic Physics (physics.atom-ph)Digital storageStimulated Raman adiabatic passage02 engineering and technologyStimulated Raman adiabatic passage (STIRAP)01 natural scienceslaw.inventionPhysics - Atomic PhysicsFTIR SPECTROSCOPYstimulated Raman adiabatic passage (STIRAP)lawStereochemistryRare earthsStatistical physicsMetal ionsmolecular Rydberg statesQCparity violationPhysicseducation.field_of_studyQuantum PhysicsElectric dipole momentsCoherent population transfer021001 nanoscience & nanotechnologyCondensed Matter Physicsacoustic waves; molecular Rydberg states; nuclear coherent population transfer; parity violation; spin waves; stimulated Raman adiabatic passage (STIRAP); ultracold moleculesADIABATIC PASSAGEAtomic and Molecular Physics and OpticsChemical DynamicsMolecular beamsVIOLATING ENERGY DIFFERENCEResearch group A. Pálffy – Division C. H. KeitelStimulated emission0210 nano-technologyCoherence (physics)Experimental parametersPopulationFOS: Physical sciencesacoustic waves530spin wavesMolecular Rydberg statesELECTROMAGNETICALLY INDUCED TRANSPARENCYSINGLE PHOTONSQuantum statePhysics - Chemical Physics0103 physical sciencesUltracold moleculesSpontaneous emissionddc:530Nuclear coherent population transfer010306 general physicseducationStimulated Raman adiabatic passageChemical Physics (physics.chem-ph)Rare-earth-ion doped crystalsPhotonsQuantum opticsnuclear coherent population transferBROAD-BANDControlled manipulationsPOLAR-MOLECULESMoleculesRydberg statesLaserSuperconducting quantum circuitAcoustic wavesParity violationstimulated Raman adiabatic passage (STIRAP); ultracold molecules; parity violation; spin waves; acoustic waves; molecular Rydberg states; nuclear coherent population transferDewey Decimal Classification::500 | Naturwissenschaften::530 | Physikultracold moleculesQuantum Physics (quant-ph)QUANTUM GASSpin waves
researchProduct

Faraday patterns in bose-Einstein condensates.

2002

Temporal periodic modulation of the interatomic s-wave scattering length in Bose-Einstein condensates is shown to excite subharmonic patterns of atom density through a parametric resonance. The dominating wavelength of the spatial structures is shown to be primarily selected by the excitation frequency but also affected by the depth of the spatial modulation via a nonlinear resonance. These phenomena represent macroscopic quantum analogues of the Faraday waves excited in vertically shaken liquids.

FOS: Physical sciencesGeneral Physics and AstronomyPattern formationPattern Formation and Solitons (nlin.PS)Resonance (particle physics)law.inventionFaraday wavesymbols.namesakelawQuantum mechanicsFaraday effectFaraday cageFeshbach resonanceCondensed Matter - Statistical MechanicsPhysicsCondensed Matter::Quantum GasesStatistical Mechanics (cond-mat.stat-mech)Condensed matter physicsScatteringCondensed Matter::OtherResonanceScattering lengthNonlinear Sciences - Pattern Formation and SolitonsSymmetry (physics)Magnetic fieldModulationNonlinear resonanceExcited statesymbolsDissipative systemState of matterAtomic physicsParametric oscillatorExcitationBose–Einstein condensatePhysical review letters
researchProduct

Faraday patterns in low-dimensional Bose-Einstein condensates

2004

We show that Faraday patterns can be excited in the weak confinement space of low-dimensional Bose-Einstein condensates by temporal modulation of the trap width, or equivalently of the trap frequency Omega_tight, in the tight confinement space. For slow modulation, as compared with Omega_tight, the low-dimensional dynamics of the condensate in the weak confinement space is described by a Gross-Pitaevskii equation with time modulated nonlinearity coefficient. For increasing modulation frequencies a noticeable reduction of the pattern formation threshold is observed close to 2*Omega_tight, which is related to the parametric excitation of the internal breathing mode in the tight confinement sp…

Condensed Matter::Quantum GasesPhysicsStatistical Mechanics (cond-mat.stat-mech)Condensed matter physicsCondensed Matter::OtherFOS: Physical sciencesPattern formationCondensed Matter - Soft Condensed MatterSpace (mathematics)Wave equationOmegaAtomic and Molecular Physics and Opticslaw.inventionsymbols.namesakelawFaraday effectsymbolsSoft Condensed Matter (cond-mat.soft)Faraday cageCondensed Matter - Statistical MechanicsBose–Einstein condensateExcitationPhysical Review A
researchProduct

Topological Protection and Control of Quantum Markovianity

2020

This article belongs to the Special Issue Topological Photonics.

lcsh:Applied optics. PhotonicsDecoherence dynamicAnderson localizationQuantum-Hall topological insulatorQuantum decoherencePhysics::OpticsFOS: Physical sciences02 engineering and technologyTopology01 natural sciencesQuantum-Hall topological insulators0103 physical sciencesTopological orderRadiology Nuclear Medicine and imagingAnderson localizationGauge theoryQuantum information010306 general physicsInstrumentationQuantumNon-Markovianity in open quantum systemPhysicsQuantum PhysicsCavity quantum electrodynamicslcsh:TA1501-1820Decoherence dynamics021001 nanoscience & nanotechnologyAtomic and Molecular Physics and OpticsTopological orderQubitQuantum Physics (quant-ph)0210 nano-technologyNon-Markovianity in open quantum systemsPhotonics
researchProduct

Intermittent decoherence blockade in a chiral ring environment

2021

It has long been recognized that emission of radiation from atoms is not an intrinsic property of individual atoms themselves, but it is largely affected by the characteristics of the photonic environment and by the collective interaction among the atoms. A general belief is that preventing full decay and/or decoherence requires the existence of dark states, i.e., dressed light-atom states that do not decay despite the dissipative environment. Here, we show that, contrary to such a common wisdom, decoherence suppression can be intermittently achieved on a limited time scale, without the need for any dark state, when the atom is coupled to a chiral ring environment, leading to a highly non-e…

Quantum decoherenceQuantum informationScienceFOS: Physical sciencesRadiationRing (chemistry)Quantum mechanics01 natural sciencesArticle010305 fluids & plasmasQuantum mechanics0103 physical sciences010306 general physicsPhysicsQuantum PhysicsMultidisciplinarybusiness.industryQuantum feedbackQRDecoherence spontaneous emission Open quantum systemsDark stateDissipative systemMedicineCollective interactionPhotonicsbusinessQuantum Physics (quant-ph)Qubits
researchProduct

Intermittent decoherence blockade

2020

It has long been recognized that emission of radiation from atoms is not an intrinsic property of individual atoms themselves, but it is largely affected by the characteristics of the photonic environment and by the collective interaction among the atoms. A general belief is that preventing full decay and/or decoherence requires the existence of dark states, i.e., dressed light-atom states that do not decay despite the dissipative environment. Here, we show that, contrary to such a common wisdom, decoherence suppression can be intermittently achieved on a limited time scale, without the need for any dark state, when the atom is coupled to a chiral ring environment, leading to a highly non-e…

researchProduct