0000000000243374
AUTHOR
Bondì Maria Luisa
A NANOPARTICULATE DRUG-DELIVERY SYSTEM FOR RIVASTIGMINE: PHYSICO-CHEMICAL AND IN VITRO BIOLOGICAL CHARACTERIZATION
The preparation and characterization of surface-PE Gylated polymeric nanoparticles are described. These systems were obtained by UV irradiation of PHM and PHM-PEG(2000) as an inverse microemulsion, using an aqueous solution of the PHM/PHM-PEG(2000) copolymer mixture as the internal phase and triacetin saturated with water as the external phase, and characterized by dimensional analysis, zeta-potential measurements and XPS. in vitro biological tests demonstrated their cell compatibility and their ability to escape from phagocytosis. Rivastigmine was encapsulated into the nanoparticle structure and drug-release profiles from loaded samples were investigated in PBS at pH = 7.4 and human plasma.
Amphiphilic poly(hydroxyethylaspartamide) derivative-based micelles as drug delivery systems for ferulic acid
Self-assembling micelles, potentially useful as drug delivery systems for ferulic acid (FA), were obtained in aqueous media from amphiphilic alpha,beta-poly(N-2-hydroxyethyl)-dl-aspartamide (PHEA) copolymers bearing at the polyamino acidic backbone both poly(ethyleneglycol) (2000 or 5000 Da) and hexadecylamine (C(16)) moieties, at a concentration of 7 x 10(- 3) and 4 x 10(- 3) g/l, respectively, with nanometre size and negative zeta potential. These micelles were able to entrap FA and to release it in a prolonged way in phosphate buffer solution at pH 7.4 and human plasma. These systems were also stable in storage conditions and have no cytotoxic effects on Caco-2, 16 HBE, HuDe and K562 cel…