0000000000243891
AUTHOR
Pierre Luciano
Histone H3 Lysine 4 Mono-methylation does not Require Ubiquitination of Histone H2B
The yeast Set1-complex catalyzes histone H3 lysine 4 (H3K4) methylation. Using N-terminal Edman sequencing, we determined that 50% of H3K4 is methylated and consists of roughly equal amounts of mono, di and tri-methylated H3K4. We further show that loss of either Paf1 of the Paf1 elongation complex, or ubiquitination of histone H2B, has only a modest effect on bulk histone mono-methylation at H3K4. Despite the fact that Set1 recruitment decreases in paf1delta cells, loss of Paf1 results in an increase of H3K4 mono-methylation at the 5' coding region of active genes, suggesting a Paf1-independent targeting of Set1. In contrast to Paf1 inactivation, deleting RTF1 affects H3K4 mono-methylation…
Structural Characterization of Set1 RNA Recognition Motifs and their Role in Histone H3 Lysine 4 Methylation
Departament de Bioquimica iBiologia Molecular, Universitatde Valencia, C/Dr Moliner 50,46100, Burjassot, SpainThe yeast Set1 histone H3 lysine 4 (H3K4) methyltransferase contains, inaddition to its catalytic SET domain, a conserved RNA recognition motif(RRM1). We present here the crystal structure and the secondary structureassignment in solution of the Set1 RRM1. Although RRM1 has the expectedβαββαβ RRM-fold, it lacks the typical RNA-binding features of thesemodules. RRM1 is not able to bind RNA by itself in vitro, but a constructcombining RRM1 with a newly identified downstream RRM2 specificallybinds RNA. Invivo,H3K4 methylation isnot affectedbyapoint mutation inRRM2 that preserves Set1 s…