0000000000244008
AUTHOR
A.s. Krasnov
Development of Motorized Slewing Mirror Stage for the UFFO Project
The Ultra-Fast Flash Observatory (UFFO) is a space observatory for optical follow-ups of gamma ray bursts (GRBs), aiming to explore the first 60 seconds of GRBs optical emission. UFFO is utilized to catch early optical emissions from GRBs within few sec after trigger using a Gimbal mirror which redirects the optical path rather than slewing entire spacecraft. We have developed a 15 cm two-axis Gimbal mirror stage for the UFFO-Pathfinder which is going to be on board the Lomonosov satellite which is to be launched in 2013. The stage is designed for fast and accurate motion with given budgets of 3 kg of mass and 3 Watt of power. By employing stepping motors, the slewing mirror can rotate fast…
Ultra-Fast Flash Observatory: Fast Response Space Missions for Early Time Phase of Gamma Ray Bursts
One of the unexplored domains in the study of gamma-ray bursts (GRBs) is the early time phase of the optical light curve. We have proposed Ultra-Fast Flash Observatory (UFFO) to address this question through extraordinary opportunities presented by a series of small space missions. The UFFO is equipped with a fast-response Slewing Mirror Telescope that uses a rapidly moving mirror or mirror array to redirect the optical beam rather than slewing the entire spacecraft or telescope to aim the optical instrument at the GRB position. The UFFO will probe the early optical rise of GRBs with sub-second response, for the first time, opening a completely new frontier in GRB and transient studies. Its…
Calibration and Simulation of the GRB trigger detector of the Ultra Fast Flash Observatory
The UFFO (Ultra-Fast Flash Observatory) is a GRB detector on board the Lomonosov satellite, to be launched in 2013. The GRB trigger is provided by an X-ray detector, called UBAT (UFFO Burst Alarm & Trigger Telescope), which detects X-rays from the GRB and then triggers to determine the direction of the GRB and then alerts the Slewing Mirror Telescope (SMT) to turn in the direction of the GRB and record the optical photon fluxes. This report details the calibration of the two components: the MAPMTs and the YSO crystals and simulations of the UBAT. The results shows that this design can observe a GRB within a field of view of ±35° and can trigger in a time scale as short as 0.2 – 1.0 s af…
In-Flight Calibrations of UFFO-Pathfinder
The Ultra-Fast Flash Observatory (UFFO), which will be launched onboard the Lomonosov spacecraft, contains two crucial instruments: UFFO Burst Alert & Trigger Telescope (UBAT) for detection and localization of Gamma-Ray Bursts (GRBs) and the fast-response Slewing Mirror Telescope (SMT) designed for the observation of the prompt optical/UV counterparts. Here we discuss the in-space calibrations of the UBAT detector and SMT telescope. After the launch, the observations of the standard X-ray sources such as pulsar in Crab nebula will provide data for necessary calibrations of UBAT. Several standard stars will be used for the photometric calibration of SMT. The celestial X-ray sources, e.g.…
Design and implementation of electronics and data acquisition system for Ultra-Fast Flash Observatory
The Ultra-Fast Flash Observatory (UFFO) Pathfinder for Gamma-Ray Bursts (GRBs) consists of two telescopes. The UFFO Burst Alert & Trigger Telescope (UBAT) handles the detection and localization of GRBs, and the Slewing Mirror Telescope (SMT) conducts the measurement of the UV/optical afterglow. UBAT is equipped with an X-ray detector, analog and digital signal readout electronics that detects X-rays from GRBs and determines the location. SMT is equipped with a stepping motor and the associated electronics to rotate the slewing mirror targeting the GRBs identified by UBAT. First the slewing mirror points to a GRB, then SMT obtains the optical image of the GRB using the intensified CCD an…
The readout system and the trigger algorithm implementation for the UFFO Pathfinder
Since the launch of the SWIFT, Gamma-Ray Bursts (GRBs) science has been much progressed. Especially supporting many measurements of GRB events and sharing them with other telescopes by the Gamma-ray Coordinate Network (GCN) have resulted the richness of GRB events, however, only a few of GRB events have been measured within a minute after the gamma ray signal. This lack of sub-minute data limits the study for the characteristics of the UV-optical light curve of the short-hard type GRB and the fast-rising GRB. Therefore, we have developed the telescope named the Ultra-Fast Flash Observatory (UFFO) Pathfinder, to take the sub-minute data for the early photons from GRB. The UFFO Pathfinder has…
ULTRA-FAST FLASH OBSERVATORY (UFFO) FOR OBSERVATION OF EARLY PHOTONS FROM GAMMA RAY BURSTS
I.H. Park, S. Ahmad, P. Barrillon, S. Brandt, C. Budtz-Jorgensen, A.J. Castro-Tirado, P. Chen, Y.J. Choi, P. Connell, S. Dagoret-Campagne, C. Eyles, B. Grossan, M.–H.A. Huang, A. Jung, S. Jeong, J.E. Kim, M.B. Kim, S.-W. Kim, Y.W. Kim, A.S. Krasnov, J. Lee, H. Lim, E.V. Linder, T.–C. Liu, N. Lund, K.W. Min, G.W. Na, J.W. Nam, M.I. Panasyuk, J. Ripa, V. Reglero, J.M. Rodrigo, G.F. Smoot, J.E. Suh, S. Svertilov, N. Vedenkin, M.–Z. Wang, I. Yashin Ewha Womans University, Seoul, Korea University of Paris-Sud 11, Orsay, France Technical University of Denmark, Copenhagen, Denmark Instituto de Astrofisica de Andalucia CSIC, Granada, Spain National Taiwan University, Taipei, Taiwan Korea Advanced I…
Slewing Mirror Telescope and the Data-Acquisition System for the UFFO-Pathfinder
The Ultra-Fast Flash Observatory (UFFO) aims to detect the earliest moment of Gamma-Ray Bursts (GRBs) which is not well known, resulting into the enhancement of GRB mechanism understanding. The pathfinder mission was proposed to be a scaled-down version of UFFO, and only contains the UFFO Burst Alert & Trigger Telescope (UBAT) measuring the X-ray/gamma-ray with the wide-field of view and the Slewing Mirror Telescope (SMT) with a rapid-response for the UV/optical photons. Once the UBAT detects a GRB candidate with the position accuracy of 10 arcmin, the SMT steers the UV/optical photons from the candidate to the telescope by the fast rotatable mirror and provides the early UV/optical pho…