Community driven dynamics of oscillatory network responses to threat
AbstractPhysiological responses to threat stimuli involve neural synchronized oscillations in cerebral networks with distinct organization properties. Community architecture within these networks and its dynamic adaptation could play a critical role in achieving optimal physiological responses.Here we applied dynamic network analyses to address the early phases of threat processing at the millisecond level, describing multi-frequency (theta and alpha) integration and basic reorganization properties (flexibility and clustering) that drive physiological responses. We quantified cortical and subcortical network interactions and captured illustrative reconfigurations using community allegiance …