0000000000245594
AUTHOR
Carolina Arbeláez
Neutrinos in GUTs and left right symmetry
215 páginas. Tesis Doctoral del Departamento de Física Teórica de la Universidad de Valencia y del Instituto de Física Corpuscular (IFIC).
LHC-scale left-right symmetry and unification
We construct a comprehensive list of nonsupersymmetric standard model extensions with a low-scale left-right (LR)-symmetric intermediate stage that may be obtained as simple low-energy effective theories within a class of renormalizable SO(10) grand unified theories. Unlike the traditional minimal LR models many of our example settings support a perfect gauge coupling unification even if the LR scale is in the LHC domain at a price of only (a few copies of) one or two types of extra fields pulled down to the TeV-scale ballpark. We discuss the main aspects of a potentially realistic model building conforming the basic constraints from the quark and lepton sector flavor structure, proton deca…
(g−2) anomalies and neutrino mass
Motivated by the experimentally observed deviations from standard model predictions, we calculate the anomalous magnetic moments $a_\alpha = (g-2)_\alpha$ for $\alpha=e,\mu$ in a neutrino mass model originally proposed by Babu-Nandi-Tavartkiladze (BNT). We discuss two variants of the model, the original model plus a minimally extended version with an additional hypercharge zero triplet scalar. While the original BNT model can explain $a_\mu$, only the variant with the triplet scalar can explain both experimental anomalies. The heavy fermions of the model can be produced at the high-luminosity LHC and in the part of parameter space, where the model explains the experimental anomalies, it pre…
Supersymmetric mass spectra and the seesaw type-I scale
We calculate supersymmetric mass spectra with cMSSM boundary conditions and a type-I seesaw mechanism added to explain current neutrino data. Using published, estimated errors on SUSY mass observables for a combined LHC+ILC analysis, we perform a theoretical $\chi^2$ analysis to identify parameter regions where pure cMSSM and cMSSM plus seesaw type-I might be distinguishable with LHC+ILC data. The most important observables are determined to be the (left) smuon and selectron masses and the splitting between them, respectively. Splitting in the (left) smuon and selectrons is tiny in most of cMSSM parameter space, but can be quite sizeable for large values of the seesaw scale, $m_{SS}$. Thus,…