0000000000246059
AUTHOR
Lluis Franch-gras
The effect of environmental uncertainty and diapause investment on the occurrence of specialist and generalist species
The evolution of specialist and generalist strategies is a central topic in ecology with strong implications for the biodiversity and structure of communities. Environmental unpredictability has been suggested as a key factor affecting the relative advantages of generalist species. However, life cycle features, like diapause, can also play a major role in the competitive dynamics between generalists and specialists. Zooplanktonic communities of continental waters are suitable models to study this; they inhabit water bodies that vary temporally with different degrees of uncertainty and rely on the production of diapause stages to survive across the year. We developed a simple theoretical mod…
Genomic signatures of local adaptation to the degree of environmental predictability in rotifers
AbstractEnvironmental fluctuations are ubiquitous and thus essential for the study of adaptation. Despite this, genome evolution in response to environmental fluctuations —and more specifically to the degree of environmental predictability– is still unknown. Saline lakes in the Mediterranean region are remarkably diverse in their ecological conditions, which can lead to divergent local adaptation patterns in the inhabiting aquatic organisms. The facultatively sexual rotifer Brachionus plicatilis shows diverging local adaptation in its life-history traits in relation to estimated environmental predictability in its habitats. Here, we used an integrative approach —combining environmental, phe…
Quantifying unpredictability: A multiple-model approach based on satellite imagery data from Mediterranean ponds.
Fluctuations in environmental parameters are increasingly being recognized as essential features of any habitat. The quantification of whether environmental fluctuations are prevalently predictable or unpredictable is remarkably relevant to understanding the evolutionary responses of organisms. However, when characterizing the relevant features of natural habitats, ecologists typically face two problems: (1) gathering long-term data and (2) handling the hard-won data. This paper takes advantage of the free access to long-term recordings of remote sensing data (27 years, Landsat TM/ETM+) to assess a set of environmental models for estimating environmental predictability. The case study inclu…
Empirical evidence for fast temperature-dependent body size evolution in rotifers
Organisms tend to decrease in size with increasing temperature by phenotypic plasticity (the temperature-size rule; ectotherms) and/or genetically (Bergmann’s rule; all organisms). In this study, the evolutionary response of body size to temperature was examined in the cyclically parthenogenetic rotifer Brachionus plicatilis. Our aim was to investigate whether this species, already known to decrease in size with increasing temperature by phenotypic plasticity, presents a similar pattern at the genetic level. We exposed a multiclonal mixture of B. plicatilis to experimental evolution at low and high temperature and monitored body size weekly. Within a month, we observed a smaller size at hig…
Adaptation in response to environmental unpredictability
Understanding how organisms adaptively respond to environmental fluctuations is a fundamental question in evolutionary biology. The Mediterranean region typically exhibits levels of environmental unpredictability that vary greatly in habitats over small geographical scales. In cyclically parthenogenetic rotifers, clonal proliferation occurs along with occasional bouts of sex. These bouts contribute to the production of diapausing eggs, which allows survival between growing seasons. Here, we studied two diapause-related traits in rotifers using clones from nine Brachionus plicatilis natural populations that vary in the degree of environmental unpredictability. We tested the hypothesis that …
Ecological genomics of adaptation to unpredictability in experimental rotifer populations
AbstractElucidating the genetic basis of phenotypic variation in response to different environments is key to understanding how populations evolve. Facultatively sexual rotifers can develop adaptive responses to fluctuating environments. In a previous evolution experiment, diapause-related traits changed rapidly in response to two selective regimes (predictable vs unpredictable) in laboratory populations of the rotifer Brachionus plicatilis. Here, we investigate the genomic basis of adaptation to environmental unpredictability in these experimental populations. We identified and genotyped genome-wide polymorphisms in 169 clones from both selective regimes after seven cycles of selection usi…
Data from: Adaptation in response to environmental unpredictability
Understanding how organisms adaptively respond to environmental fluctuations is a fundamental question in evolutionary biology. The Mediterranean region typically exhibits levels of environmental unpredictability that vary greatly in habitats over small geographical scales. In cyclically parthenogenetic rotifers, clonal proliferation occurs along with occasional bouts of sex. These bouts contribute to the production of diapausing eggs, which allows survival between growing seasons. Here, we studied two diapause-related traits in rotifers using clones from nine Brachionus plicatilis natural populations that vary in the degree of environmental unpredictability. We tested the hypothesis that t…