0000000000246075

AUTHOR

Alessio Alexiadis

Corrigendum to “Development of a combined solver to model transport and chemical reactions in catalytic wall-flow filters” [Chem. Eng. Res. Des. 117 (2016) 681–687]

research product

Development of a combined solver to model transport and chemical reactions in catalytic wall-flow filters

Abstract In this work, we develop a non-isothermal model for diesel particulate filters including exothermic and competing chemical reactions. We begin with an isothermal, single-reaction model and we gradually increase its complexity. By comparing various models, we aim at establishing the minimum degree of complexity required to effectively model the system under investigation. Based on the numerical simulations, we conclude that isothermal models are adequate only if the temperature of the catalyst is, at all times, completely below or completely above a critical temperature. However, if the goal is to predict the critical temperature, only non-isothermal models should be used. The resul…

research product

Wall collision and drug-carrier detachment in dry powder inhalers: Using DEM to devise a sub-scale model for CFD calculations

Abstract In this work, the Discrete Element Method (DEM) is used to simulate the dispersion process of Active Pharmaceutical Ingredients (API) after a wall collision in dry powders inhaler used for lung delivery. Any fluid dynamic effects are neglected in this analysis at the moment. A three-dimensional model is implemented with one carrier particle (diameter 100 μm) and 882 drug particles (diameter 5 μm). The effect of the impact velocity (varied between 1 and 20 m s−1), angle of impact (between 5° and 90°) and the carrier rotation (±100,000 rad s−1) are investigated for both elastic and sticky walls. The dispersion process shows a preferential area of drug detachment located in the southe…

research product