0000000000246317
AUTHOR
Vladan Velisavljevic
Efficient image compression using directionlets
Directionlets are built as basis functions of critically sampled perfect-reconstruction transforms with directional vanishing moments imposed along different directions. We combine the directionlets with the space-frequency quantization (SFQ) image compression method, originally based on the standard two-dimensional wavelet transform. We show that our new compression method outperforms the standard SFQ as well as the state-of-the-art image compression methods, such as SPIHT and JPEG-2000, in terms of the quality of compressed images, especially in a low-rate compression regime. We also show that the order of computational complexity remains the same, as compared to the complexity of the sta…
Space-Frequency Quantization for Image Compression With Directionlets
The standard separable 2-D wavelet transform (WT) has recently achieved a great success in image processing because it provides a sparse representation of smooth images. However, it fails to efficiently capture 1-D discontinuities, like edges or contours. These features, being elongated and characterized by geometrical regularity along different directions, intersect and generate many large magnitude wavelet coefficients. Since contours are very important elements in the visual perception of images, to provide a good visual quality of compressed images, it is fundamental to preserve good reconstruction of these directional features. In our previous work, we proposed a construction of critic…
Directionlets: Anisotropic Multidirectional representation with separable filtering
In spite of the success of the standard wavelet transform (WT) in image processing in recent years, the efficiency of its representation is limited by the spatial isotropy of its basis functions built in the horizontal and vertical directions. One-dimensional (1-D) discontinuities in images (edges and contours) that are very important elements in visual perception, intersect too many wavelet basis functions and lead to a nonsparse representation. To efficiently capture these anisotropic geometrical structures characterized by many more than the horizontal and vertical directions, a more complex multidirectional (M-DIR) and anisotropic transform is required. We present a new lattice-based pe…
Space-Frequency Quantization using Directionlets
In our previous work we proposed a construction of critically sampled perfect reconstruction transforms with directional vanishing moments (DVMs) imposed in the corresponding basis functions along different directions, called directionlets. Here, we combine the directionlets with the space-frequency quantization (SFQ) image compression method, originally based on the standard two-dimensional (2-D) wavelet transform (WT). We show that our new compression method outperforms the standard SFQ as well as the state-of-the-art compression methods, like SPIHT and JPEG-2000, in terms of the quality of compressed images, especially in a low-rate compression regime. We also show that the order of comp…
Low-Rate Reduced Complexity Image Compression using Directionlets
The standard separable two-dimensional (2-D) wavelet transform (WT) has recently achieved a great success in image processing because it provides a sparse representation of smooth images. However, it fails to capture efficiently one-dimensional (1-D) discontinuities, like edges and contours, that are anisotropic and characterized by geometrical regularity along different directions. In our previous work, we proposed a construction of critically sampled perfect reconstruction anisotropic transform with directional vanishing moments (DVM) imposed in the corresponding basis functions, called directionlets. Here, we show that the computational complexity of our transform is comparable to the co…
Sparse Image Representation by Directionlets
Despite the success of the standard wavelet transform (WT) in image processing in recent years, the efficiency and sparsity of its representation are limited by the spatial symmetry and separability of its basis functions built in the horizontal and vertical directions. One-dimensional discontinuities in images (edges or contours), which are important elements in visual perception, intersect too many wavelet basis functions and lead to a non-sparse representation. To capture efficiently these elongated structures characterized by geometrical regularity along different directions (not only the horizontal and vertical), a more complex multidirectional (M-DIR) and asymmetric transform is requi…