0000000000246469

AUTHOR

Olav Vahtras

Ab initio calculations of zero-field splitting parameters in linear polyacenes

Abstract The results of ab initio calculations of zero-field splitting (ZFS) parameters are presented for the linear polyacenes from benzene to pentacene. We show how the electron spin–spin (SS) parameters can be efficiently obtained from restricted high-spin open-shell wave functions (ROHF), and present calculations of these, comparing with the results of a recent multi-configurational self-consistent field approach. The SS parameters are obtained from electron SS coupling strengths evaluated as expectation values over the wave functions and from state-to-state spin–orbit (SO) interactions. The results for the two lowest triplet states of naphthalene demonstrate that excellent values can b…

research product

A comparison of density-functional-theory and coupled-cluster frequency-dependent polarizabilities and hyperpolarizabilities

The frequency-dependent polarizabilities and hyperpolarizabilities of HF, CO, H2O and para-nitroaniline calculated by density-functional theory are compared with accurate coupled-cluster results. Whereas the local-density approximation and the generalized gradient approximation (BLYP) perform very similarly and overestimate polarizabilities and, in particular, the hyperpolarizabilities, hybrid density-functional theory (B3LYP) performs better and produces results similar to those obtained by coupled-cluster singles-and-doubles theory. Comparisons are also made for singlet excitation energies, calculated using linear response theory.

research product

The Dalton quantum chemistry program system

Dalton is a powerful general-purpose program system for the study of molecular electronic structure at the Hartree-Fock, Kohn-Sham, multiconfigurational self-consistent-field, MOller-Plesset, confi ...

research product