0000000000246500

AUTHOR

Thomas R. Wolf

Character degrees and local subgroups of 𝜋-separable groups

Let G G be a finite { p , q } \{p,q \} -solvable group for different primes p p and q q . Let P ∈ Syl p ( G ) P \in \text {Syl}_{p}(G) and Q ∈ Syl q ( G ) Q \in \text {Syl}_{q}(G) be such that P Q = Q P PQ=QP . We prove that every χ ∈ Irr ( G ) \chi \in \text {Irr}(G) of p ′ p^{\prime } -degree has q ′ q^{\prime } -degree if and only if N G ( P ) ⊆ N G ( Q ) \mathbf {N}_{G}(P) \subseteq \mathbf {N}_{G}(Q) and C Q ′ ( P ) = 1 \mathbf {C}_{Q^{\prime }}(P)=1 .

research product

Orbit sizes, character degrees and Sylow subgroups

research product

p-Parts of character degrees and the index of the Fitting subgroup

Abstract In a solvable group G, if p 2 does not divide χ ( 1 ) for all χ ∈ Irr ( G ) , then we prove that | G : F ( G ) | p ≤ p 2 . This bound is best possible.

research product

VARIATIONS ON THOMPSON'S CHARACTER DEGREE THEOREM

If P is a Sylow- p -subgroup of a finite p -solvable group G , we prove that G^\prime \cap \bf{N}_G(P) \subseteq {P} if and only if p divides the degree of every irreducible non-linear p -Brauer character of G. More generally if π is a set of primes containing p and G is π-separable, we give necessary and sufficient group theoretic conditions for the degree of every irreducible non-linear p -Brauer character to be divisible by some prime in π. This can also be applied to degrees of ordinary characters.

research product

Finite Group Elements where No Irreducible Character Vanishes

AbstractIn this paper, we consider elements x of a finite group G with the property that χ(x)≠0 for all irreducible characters χ of G. If G is solvable and x has odd order, we show that x must lie in the Fitting subgroup F(G).

research product

Erratum to “Orbit sizes, character degrees and Sylow subgroups” [Adv. Math. 184 (2004) 18–36]

research product