0000000000246545
AUTHOR
F. Gökhan Ergin
Time-resolved velocity measurements in a magnetic micromixer
Abstract Mixing efficiency is lower in passive micromixers due to viscous forces and substantial research effort is focused on designing high performance micromixers. Active micromixers make use of external forces to enhance mixing efficiency. Among these, magnetic forces are popular because they are non-contact and therefore the micromixer design can be kept simple. Laser-based diagnostic tools have great potential in providing multi-parameter information in microfluidics research on mixing. MicroPIV experiments are performed to investigate the transient flow field in a magnetic micromixer undergoing labyrinthine instability. Velocity and interface front information is extracted from a seq…
Poor-Contrast Particle Image Processing in Microscale Mixing
Particle image velocimetry (PIV) often employs the cross-correlation function to identify average particle displacement in an interrogation window. The quality of correlation peak has a strong dependence on the signal-to-noise ratio (SNR), or contrast of the particle images. In fact, variable-contrast particle images are not uncommon in the PIV community: Strong light sheet intensity variations, wall reflections, multiple scattering in densely-seeded regions and two-phase flow applications are likely sources of local contrast variations. In this paper, we choose an image pair obtained in a micro-scale mixing experiment with severe local contrast gradients. In regions where image contrast is…