0000000000246546

AUTHOR

Kaspars ĒRglis

showing 12 related works from this author

Time-resolved velocity measurements in a magnetic micromixer

2015

Abstract Mixing efficiency is lower in passive micromixers due to viscous forces and substantial research effort is focused on designing high performance micromixers. Active micromixers make use of external forces to enhance mixing efficiency. Among these, magnetic forces are popular because they are non-contact and therefore the micromixer design can be kept simple. Laser-based diagnostic tools have great potential in providing multi-parameter information in microfluidics research on mixing. MicroPIV experiments are performed to investigate the transient flow field in a magnetic micromixer undergoing labyrinthine instability. Velocity and interface front information is extracted from a seq…

Fluid Flow and Transfer ProcessesPhysicsMechanical EngineeringGeneral Chemical EngineeringAcousticsMicrofluidicsAerospace EngineeringMicromixerImage processingEdge detectionFilter (large eddy simulation)Nuclear Energy and EngineeringPrewitt operatorMixing (physics)Microscale chemistryExperimental Thermal and Fluid Science
researchProduct

Magnetic field driven micro-convection in the Hele-Shaw cell: the Brinkman model and its comparison with experiment

2015

International audience; The micro-convection caused by the ponderomotive forces of the self-magnetic field in a magnetic fluid is studied here both numerically and experimentally. The theoretical approach based on the general Brinkman model substantially improves the description with respect to the previously proposed Darcy model. The predictions of both models are here compared to finely controlled experiments. The Brinkman model, in contrast to the Darcy model, allows us to describe the formation of mushrooms on the plumes of the micro-convective flow and the width of the fingers. In the Brinkman approach, excellent quantitative agreement is also obtained for the finger velocity dynamics …

ConvectionPhysics[PHYS.PHYS.PHYS-FLU-DYN]Physics [physics]/Physics [physics]/Fluid Dynamics [physics.flu-dyn]Field (physics)Mechanical EngineeringFlow (psychology)Field strengthMechanicsRayleigh numberCondensed Matter PhysicsMagnetic fieldPhysics::Fluid DynamicsHele-Shaw flowMechanics of Materials[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]Diffusion (business)[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat]
researchProduct

Flexible ferromagnetic filaments and the interface with biology

2009

Flexible ferromagnetic filaments are studied both theoretically and experimentally. Two main deformation modes of the filament at magnetic field inversion are theoretically described and observed experimentally by using DNA-linked chains of ferromagnetic particles. Anomalous orientation of ferromagnetic filaments perpendicular to AC field with a frequency which is high enough is predicted and confirmed experimentally. By experimental studies of magnetotactic bacteria it is demonstrated how these properties of ferromagnetic filaments may be used to measure the flexibility of the chain of magnetosomes.

Ferromagnetic particleMagnetotactic bacteriaCondensed matter physicsMagnetosomeCondensed Matter PhysicsQuantitative Biology::Cell BehaviorElectronic Optical and Magnetic MaterialsMagnetic fieldQuantitative Biology::Subcellular ProcessesProtein filamentFerromagnetismPerpendicularCondensed Matter::Strongly Correlated ElectronsBrownian motionJournal of Magnetism and Magnetic Materials
researchProduct

Gelation of semiflexible polyelectrolytes by multivalent counterions

2012

Filamentous polyelectrolytes in aqueous solution aggregate into bundles by interactions with multivalent counterions. These effects are well documented by experiment and theory. Theories also predict a gel phase in isotropic rodlike polyelectrolyte solutions caused by multivalent counterion concentrations much lower than those required for filament bundling. We report here the gelation of Pf1 virus, a model semiflexible polyelectrolyte, by the counterions Mg(2+), Mn(2+) and spermine(4+). Gelation can occur at 0.04% Pf1 volume fraction, which is far below the isotropic-nematic transition of 0.7% for Pf1 in monovalent salt. Unlike strongly crosslinked gels of semiflexible polymers, which stif…

inorganic chemicalschemistry.chemical_classificationAqueous solutionChemistrymacromolecular substancesGeneral ChemistryPolymerCondensed Matter PhysicsArticlePolyelectrolyteProtein filamentChemical physicsPolymer chemistryVolume fractionElasticity (economics)CounterionSofteningSoft Matter
researchProduct

Salmon fibrinogen and chitosan scaffold for tissue engineering: in vitro and in vivo evaluation

2018

3D fibrous scaffolds have received much recent attention in regenerative medicine. Use of fibrous scaffolds has shown promising results in tissue engineering and wound healing. Here we report the development and properties of a novel fibrous scaffold that is useful for promoting wound healing. A scaffold made of salmon fibrinogen and chitosan is produced by electrospinning, resulting in a biocompatible material mimicking the structure of the native extracellular matrix (ECM) with suitable biochemical and mechanical properties. The scaffold is produced without the need for enzymes, in particular thrombin, but is fully compatible with their addition if needed. Human dermal fibroblasts culture…

0301 basic medicineScaffoldMaterials scienceSurface PropertiesTissue Engineering Constructs and Cell SubstratesBiomedical EngineeringBiophysicsBiocompatible MaterialsBioengineering02 engineering and technologyRegenerative medicineBiomaterialsChitosanExtracellular matrix03 medical and health scienceschemistry.chemical_compound3D cell cultureThrombinTissue engineeringSalmonmedicineAnimalsHumansCell ProliferationChitosanWound HealingTissue EngineeringTissue Scaffoldsintegumentary systemFibrinogenElectrochemical TechniquesFibroblasts021001 nanoscience & nanotechnologyRats3. Good health030104 developmental biologychemistry0210 nano-technologyWound healingBiomedical engineeringmedicine.drugJournal of Materials Science: Materials in Medicine
researchProduct

Magnetic microrods as a tool for microrheology

2015

International audience; Dynamics of superparamagnetic rods in crossed constant and alternating magnetic fields as a function of field frequency are studied and it is shown that above the critical value of the amplitude of the alternating field the rod oscillates around the direction of the alternating field. The fit of the experimentally measured time dependence of the mean orientation angle of the rod allows one to determine the ratio of magnetic and viscous torques which act on the rod. The protocol of microrheological measurements consists of recording the dynamics of the orientation of the rod when the magnetic field is applied at an angle to the rod and observing its relaxation due to …

MicrorheologyMaterials scienceField (physics)genetic structures02 engineering and technology01 natural sciencesRod010305 fluids & plasmasOpticsElectricity0103 physical sciencesCondensed matter physicsbusiness.industryViscosityRelaxation (NMR)Elastic energyGeneral ChemistryModels Theoretical021001 nanoscience & nanotechnologyCondensed Matter PhysicsCritical valueequipment and suppliesElasticityMagnetic fieldCondensed Matter::Soft Condensed MatterAmplitudeMagnetsMicrotechnologysense organs0210 nano-technologybusinessRheology[PHYS.COND.CM-SCM]Physics [physics]/Condensed Matter [cond-mat]/Soft Condensed Matter [cond-mat.soft]
researchProduct

Dynamics of Magnetotactic Bacteria in a Rotating Magnetic Field

2007

The dynamics of the motile magnetotactic bacterium Magnetospirillum gryphiswaldense in a rotating magnetic field is investigated experimentally and analyzed by a theoretical model. These elongated bacteria are propelled by single flagella at each bacterial end and contain a magnetic filament formed by a linear assembly of approximately 40 ferromagnetic nanoparticles. The movements of the bacteria in suspension are analyzed by consideration of the orientation of their magnetic dipoles in the field, the hydrodynamic resistance of the bacteria, and the propulsive force of the flagella. Several novel features found in experiments include a velocity reversal during motion in the rotating field a…

Electromagnetic fieldMagnetotactic bacteriaField (physics)MovementBiophysics02 engineering and technology01 natural sciencesModels BiologicalQuantitative Biology::Cell BehaviorProtein filamentQuantitative Biology::Subcellular ProcessesMagneticsElectromagnetic Fields0103 physical sciencesMagnetospirillum010306 general physicsMagnetospirillumPhysicsRotating magnetic fieldPhysics::Biological PhysicsbiologyMagnetic moment021001 nanoscience & nanotechnologybiology.organism_classificationequipment and suppliesClassical mechanicsChemical physicsOther0210 nano-technologyMagnetic dipolehuman activitiesBiophysical Journal
researchProduct

Stability analysis of a paramagnetic spheroid in a precessing field

2019

Abstract The stability of a paramagnetic prolate or oblate spheroidal particle in a precessing magnetic field is studied. The bifurcation diagram is calculated analytically as a function of the magnetic field frequency and the precession angle. The orientation of the particle in the synchronous regime is calculated. The rotational dynamics and the mean rotational frequency in the asynchronous regime are also obtained. The theoretical model we describe enables the analytic calculation of the dynamics of the particle in the limiting case when the motion is periodic. The theoretical models were also compared with experimental results of rod like particle dynamics in a precessing magnetic field…

010302 applied physicsPhysicsField (physics)Dynamics (mechanics)02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter PhysicsBifurcation diagram01 natural sciencesStability (probability)Electronic Optical and Magnetic MaterialsComputational physicsMagnetic fieldParamagnetismOrientation (geometry)0103 physical sciencesParticle0210 nano-technologyJournal of Magnetism and Magnetic Materials
researchProduct

Lokanu magnētisku stīgu īpašību un kustības eksperimentāli pētījumi

2010

Elektroniskā versija nesatur pielikumus

Fizika materiālzinātne matemātika un statistikaFizikaFizika astronomija un mehānika
researchProduct

Three dimensional dynamics of ferromagnetic swimmer

2011

It is shown that a flexible ferromagnetic filament self-propels perpendicularly to the AC magnetic field during a limited period of time due to the instability of the planar motion with respect to three dimensional perturbations. The transition from the oscillating U-like shapes to the oscillating S-like shapes is characterized by the calculated Wr number.

PhysicsProtein filamentPlanarCondensed matter physicsFerromagnetismOscillationPerpendicularEquations of motionCondensed Matter PhysicsInstabilityElectronic Optical and Magnetic MaterialsMagnetic fieldJournal of Magnetism and Magnetic Materials
researchProduct

Magnetic field driven micro-convection in the Hele-Shaw cell

2013

AbstractMicro-convection caused by ponderomotive forces of the self-magnetic field of a magnetic fluid in the Hele-Shaw cell under the action of a vertical homogeneous magnetic field is studied both experimentally and numerically. It is shown that a non-potential magnetic force at magnetic Rayleigh numbers greater than the critical value causes fingering at the interface between the miscible magnetic and non-magnetic fluids. The threshold value of the magnetic Rayleigh number depends on the smearing of the interface between fluids. Fingering with its subsequent decay due to diffusion of particles significantly increases the mixing at the interface. Velocity and vorticity fields at fingering…

ConvectionPhysicsField (physics)Mechanical EngineeringMechanicsRayleigh numberVorticityequipment and suppliesCondensed Matter PhysicsCritical valueMagnetic fieldPhysics::Fluid DynamicsHele-Shaw flowParticle image velocimetryMechanics of Materialshuman activitiesNonlinear Sciences::Pattern Formation and SolitonsJournal of Fluid Mechanics
researchProduct

Elastic properties of DNA linked flexible magnetic filaments.

2011

Elastic properties of magnetic filaments linked by DNA in solutions of univalent and bivalent salts with different pH values are investigated through their deformation in an external field. A strong dependence of the bending modulus in bivalent salt solution on the pH is shown. Experimental results are interpreted on the basis of the magnetic elastica.

Quantitative Biology::BiomoleculesChemistryFlexural modulusQuantitative Biology::Molecular NetworksCondensed Matter PhysicsBivalent (genetics)Salt solutionchemistry.chemical_compoundCrystallographyChemical physicsExternal fieldGeneral Materials ScienceElasticity (economics)DNAJournal of physics. Condensed matter : an Institute of Physics journal
researchProduct