0000000000246669

AUTHOR

Hossam Elgabarty

showing 3 related works from this author

Correction: “On-the-fly” coupled cluster path-integral molecular dynamics: impact of nuclear quantum effects on the protonated water dimer

2015

We present an accelerated ab initio path-integral molecular dynamics technique, where the interatomic forces are calculated “on-the-fly” by accurate coupled cluster electronic structure calculations. In this way not only dynamic electron correlation, but also the harmonic and anharmonic zero-point energy, as well as tunneling effects are explicitly taken into account. This method thus allows for very precise finite temperature quantum molecular dynamics simulations. The predictive power of this novel approach is illustrated on the example of the protonated water dimer, where the impact of nuclear quantum effects on its structure and the 1H magnetic shielding tensor are discussed in detail.

Water dimerElectronic correlationChemistryAb initioGeneral Physics and AstronomyElectronic structureMolecular physicsMolecular dynamicsCoupled clusterQuantum mechanicsPath integral molecular dynamicsPhysical and Theoretical ChemistryAtomic physicsQuantum tunnellingPhysical Chemistry Chemical Physics
researchProduct

Phycocyanobilin in solution – a solvent triggered molecular switch

2014

We present a computational investigation of the conformational response of phycocyanobilin (PCB) to the ability of solvents to form hydrogen bonds. PCB is the chromophore of several proteins in light harvesting complexes. We determine the conformational distributions in different solvents (methanol and hexamethylphosphoramide HMPT) by means of ab initio molecular dynamics simulations and characterize them via ab initio calculations of NMR chemical shift patterns. The computed trajectories and spectroscopic fingerprints illustrate that the energy landscape is very complex and exhibits various conformations of similar energy. We elucidate the strong influence of the solvent characteristics on…

Molecular switchMagnetic Resonance SpectroscopyMethanolPhycocyaninGeneral Physics and AstronomyEnergy landscapeHydrogen BondingChromophore540HempaPhotochemistrySolutionschemistry.chemical_compoundMolecular recognitionIsomerismHexamethylphosphoramidechemistryPhycocyanobilinPhycobilinsMoleculePhysical and Theoretical ChemistryProtic solventPhys. Chem. Chem. Phys.
researchProduct

Structure and Dynamics of the Instantaneous Water/Vapor Interface Revisited by Path-Integral and Ab Initio Molecular Dynamics Simulations

2015

The structure and dynamics of the water/vapor interface is revisited by means of path-integral and second-generation Car-Parrinello ab-initio molecular dynamics simulations in conjunction with an instantaneous surface definition [A. P. Willard and D. Chandler, J. Phys. Chem. B 114, 1954 (2010)]. In agreement with previous studies, we find that one of the OH bonds of the water molecules in the topmost layer is pointing out of the water into the vapor phase, while the orientation of the underlying layer is reversed. Therebetween, an additional water layer is detected, where the molecules are aligned parallel to the instantaneous water surface.

Surface (mathematics)KineticsFOS: Physical sciencesMolecular Dynamics SimulationCondensed Matter - Soft Condensed MatterMolecular physicsMolecular dynamicsPhysics - Chemical PhysicsMaterials ChemistryMoleculePhysical and Theoretical ChemistryCondensed Matter - Statistical MechanicsPhysics::Atmospheric and Oceanic PhysicsChemical Physics (physics.chem-ph)Statistical Mechanics (cond-mat.stat-mech)Molecular StructureChemistryHydrogen bondWaterHydrogen BondingComputational Physics (physics.comp-ph)Surfaces Coatings and FilmsKineticsSteamPath integral formulationSoft Condensed Matter (cond-mat.soft)Physical chemistryPhysics - Computational PhysicsLayer (electronics)Water vaporThe Journal of Physical Chemistry B
researchProduct