0000000000246743
AUTHOR
C. Tschalaer
Measurement of the interference structure functionRLTfor the12C(e,e′p)reaction in the quasielastic region
The coincidence cross section and the interference structure function, ${R}_{\mathrm{LT}},$ were measured for the ${}^{12}\mathrm{C}{(e,e}^{\ensuremath{'}}p){}^{11}\mathrm{B}$ reaction at quasielastic kinematics and central momentum transfer of $|\stackrel{\ensuremath{\rightarrow}}{q}|=400\mathrm{M}\mathrm{e}\mathrm{V}/\mathrm{c}.$ The measurement was at an opening angle of ${\ensuremath{\theta}}_{\mathrm{pq}}=11\ifmmode^\circ\else\textdegree\fi{},$ covering a range in missing energy of ${E}_{m}=0$ to 65 MeV. The ${R}_{\mathrm{LT}}$ structure function is found to be consistent with zero for ${E}_{m}g50\mathrm{MeV},$ confirming an earlier study which indicated that ${R}_{L}$ vanishes in this…
Investigation of the conjectured nucleon deformation at low momentum transfer.
We report new precise H$(e,e^\prime p)\pi^0$ measurements at the $\Delta(1232)$ resonance at $Q^2= 0.127$ (GeV/c)$^2$ using the MIT/Bates out-of-plane scattering (OOPS) facility. The data reported here are particularly sensitive to the transverse electric amplitude ($E2$) of the $\gamma^* N\to\Delta$ transition. Analyzed together with previous data yield precise quadrupole to dipole amplitude ratios $EMR = (-2.3 \pm 0.3_{stat+sys} \pm 0.6_{model})%$ and $CMR = (-6.1 \pm 0.2_{stat+sys}\pm 0.5_{model})%$ and for $M^{3/2}_{1+} = (41.4 \pm 0.3_{stat+sys}\pm 0.4_{model})(10^{-3}/m_{\pi^+})$. They give credence to the conjecture of deformation in hadronic systems favoring, at low $Q^2$, the domin…
Measurement of the Longitudinal, Transverse, and Longitudinal-Transverse Structure Functions in theH2(e,e′p)nReaction
We have separated the longitudinal ({ital f}{sub 00}), transverse ({ital f}{sub 11}), and longitudinal-transverse interference ({ital f}{sub 01}) structure functions in the {sup 2}H({ital e},{ital e}{prime}{ital p}){ital n} reaction at {ital q}{searrow}{parallel}{approx_equal} 400 MeV/{ital c} and {omega}{approx_equal}110 MeV. A nonrelativistic calculation which includes effects due to final state interactions, meson exchange currents, and isobar configurations agrees with the measured {ital f}{sub 11} and {ital f}{sub 01} but overpredicts {ital f}{sub 00} by 25{percent} (2{sigma}). The data are also compared to the results of previous structure function measurements. {copyright} {ital 1996…
Charge Form Factor of the Neutron at Low Momentum Transfer from theH→2(e→,e′n)H1Reaction
We report new measurements of the neutron charge form factor at low momentum transfer using quasielastic electrodisintegration of the deuteron. Longitudinally polarized electrons at an energy of 850 MeV were scattered from an isotopically pure, highly polarized deuterium gas target. The scattered electrons and coincident neutrons were measured by the Bates Large Acceptance Spectrometer Toroid (BLAST) detector. The neutron form factor ratio ${G}_{E}^{n}/{G}_{M}^{n}$ was extracted from the beam-target vector asymmetry ${A}_{\mathrm{ed}}^{V}$ at four-momentum transfers ${Q}^{2}=0.14$, 0.20, 0.29, and $0.42\text{ }\text{ }(\mathrm{GeV}/c{)}^{2}$.
Measurements of the Generalized Electric and Magnetic Polarizabilities of the Proton at LowQ2Using the Virtual-Compton-Scattering Reaction
Experimental details of a virtual Compton scattering (VCS) experiment performed on the proton at the MIT-Bates out-of-plane scattering facility are presented. The VCS response functions ${P}_{LL}\ensuremath{-}{P}_{TT}/\phantom{{P}_{TT}\ensuremath{\varepsilon}}\ensuremath{\varepsilon}$ and ${P}_{LT}$ have been measured at ${Q}^{2}=0.057\phantom{\rule{0.28em}{0ex}}{\mathrm{GeV}}^{2}/{c}^{2}$. The generalized electric and magnetic polarizabilities, $\ensuremath{\alpha}({Q}^{2})$ and $\ensuremath{\beta}({Q}^{2})$, and the mean-square electric polarizability radius$\ensuremath{\langle}{r}_{\ensuremath{\alpha}}^{2}\ensuremath{\rangle}$ are obtained from a dispersion analysis of the data. The resu…
Measurement of the partial cross sectionsσTT,σLT, and(σT+ɛσL)of the1H(e,e′π+)nreaction in theΔ(1232)resonance
We report precision {sup 1}H(e, e{sup '{pi}+})n measurements in the {Delta}(1232) resonance at Q{sup 2}=0.127(GeV/c){sup 2} obtained at the MIT-Bates out-of-plane scattering facility. These are the lowest, but nonzero, Q{sup 2} measurements in the {pi}{sup +} channel. The data offer tests of the theoretical calculations, particularly of the background amplitude contributions. The chiral effective field theory and Sato-Lee model calculations are not in agreement with this experiment.
The BLAST experiment
The Bates large acceptance spectrometer toroid (BLAST) experiment was operated at the MIT-Bates Linear Accelerator Center from 2003 until 2005. The detector and experimental program were designed to study, in a systematic manner, the spin-dependent electromagnetic interaction in few-nucleon systems. As such the data will provide improved measurements for neutron, proton, and deuteron form factors. The data will also allow details of the reaction mechanism, such as the role of final state interactions, pion production, and resonances to be studied. The experiment used: a longitudinally polarized electron beam stored in the South Hall Storage Ring; a highly polarized, isotopically pure, inter…
Relativistic Effects and Two-Body Currents inH2(e→,e′p)nUsing Out-of-Plane Detection
Measurements of the (2)H((-->)e,e(')p)n reaction were performed with the out-of-plane magnetic spectrometers (OOPS) at the MIT-Bates Linear Accelerator. The longitudinal-transverse, f(LT) and f(')(LT), and the transverse-transverse, f(TT), interference responses at a missing momentum of 210 MeV/c were simultaneously extracted in the dip region at Q2 = 0.15 (GeV/c)(2). In comparison to models of deuteron electrodisintegration, the data clearly reveal strong effects of relativity and final-state interactions and the importance of two-body meson-exchange currents and isobar configurations. We demonstrate that such effects can be disentangled by extracting these responses using the novel out-of…