Statistical analysis of financial returns for a multiagent order book model of asset trading
We recently introduced a realistic order book model [T. Preis, Europhys. Lett. 75, 510 (2006)] which is able to generate the stylized facts of financial markets. We analyze this model in detail, explain the consequences of the use of different groups of traders, and focus on the foundation of a nontrivial Hurst exponent based on the introduction of a market trend. Our order book model supports the theoretical argument that a nontrivial Hurst exponent implies not necessarily long-term correlations. A coupling of the order placement depth to the market trend can produce fat tails, which can be described by a truncated Lévy distribution.
Multi-GPU Accelerated Multi-Spin Monte Carlo Simulations of the 2D Ising Model
A Modern Graphics Processing unit (GPU) is able to perform massively parallel scientific computations at low cost. We extend our implementation of the checkerboard algorithm for the two-dimensional Ising model [T. Preis et al., Journal of Chemical Physics 228 (2009) 4468–4477] in order to overcome the memory limitations of a single GPU which enables us to simulate significantly larger systems. Using multi-spin coding techniques, we are able to accelerate simulations on a single GPU by factors up to 35 compared to an optimized single Central Processor Unit (CPU) core implementation which employs multi-spin coding. By combining the Compute Unified Device Architecture (CUDA) with the Message P…
Accelerated fluctuation analysis by graphic cards and complex pattern formation in financial markets
The compute unified device architecture is an almost conventional programming approach for managing computations on a graphics processing unit (GPU) as a data-parallel computing device. With a maximum number of 240 cores in combination with a high memory bandwidth, a recent GPU offers resources for computational physics. We apply this technology to methods of fluctuation analysis, which includes determination of the scaling behavior of a stochastic process and the equilibrium autocorrelation function. Additionally, the recently introduced pattern formation conformity (Preis T et al 2008 Europhys. Lett. 82 68005), which quantifies pattern-based complex short-time correlations of a time serie…
Price-Time Priority and Pro Rata Matching in an Order Book Model of Financial Markets
Using our recently introduced order book model of financial markets we analyzed two different matching principles for order allocation — price-time priority and pro rata matching. Price-time priority uses the submission timestamp which prioritizes orders in the book with the same price. The order which was entered earliest at a given price limit gets executed first. Pro rata matching is used for products with low intraday volatility of best bid and best ask price. Pro rata matching ensures constant access for orders of all sizes. We demonstrate how a multiagent-based model of financial market can be used to study microscopic aspects of order books.
Correlated randomness and switching phenomena
One challenge of biology, medicine, and economics is that the systems treated by these serious scientific disciplines have no perfect metronome in time and no perfect spatial architecture—crystalline or otherwise. Nonetheless, as if by magic, out of nothing but randomness one finds remarkably fine-tuned processes in time and remarkably fine-tuned structures in space. Further, many of these processes and structures have the remarkable feature of “switching” from one behavior to another as if by magic. The past century has, philosophically, been concerned with placing aside the human tendency to see the universe as a fine-tuned machine. Here we will address the challenge of uncovering how, th…
Trend Switching Processes in Financial Markets
For an intriguing variety of switching processes in nature, the underlying complex system abruptly changes at a specific point from one state to another in a highly discontinuous fashion. Financial market fluctuations are characterized by many abrupt switchings creating increasing trends (“bubble formation”) and decreasing trends (“bubble collapse”), on time scales ranging from macroscopic bubbles persisting for hundreds of days to microscopic bubbles persisting only for very short time scales. Our analysis is based on a German DAX Future data base containing 13,991,275 transactions recorded with a time resolution of 10− 2 s. For a parallel analysis, we use a data base of all S&P500 stocks …
Multi-agent-based Order Book Model of financial markets
We introduce a simple model for simulating financial markets, based on an order book, in which several agents trade one asset at a virtual exchange continuously. For a stationary market the structure of the model, the order flow rates of the different kinds of order types and the used price time priority matching algorithm produce only a diffusive price behavior. We show that a market trend, i.e. an asymmetric order flow of any type, leads to a non-trivial Hurst exponent for the price development, but not to "fat-tailed" return distributions. When one additionally couples the order entry depth to the prevailing trend, also the stylized empirical fact of "fat tails" can be reproduced by our …
Complex dynamics of our economic life on different scales: insights from search engine query data.
Search engine query data deliver insight into the behaviour of individuals who are the smallest possible scale of our economic life. Individuals are submitting several hundred million search engine queries around the world each day. We study weekly search volume data for various search terms from 2004 to 2010 that are offered by the search engine Google for scientific use, providing information about our economic life on an aggregated collective level. We ask the question whether there is a link between search volume data and financial market fluctuations on a weekly time scale. Both collective ‘swarm intelligence’ of Internet users and the group of financial market participants can be rega…
Fluctuation patterns in high-frequency financial asset returns
We introduce a new method for quantifying pattern-based complex short-time correlations of a time series. Our correlation measure is 1 for a perfectly correlated and 0 for a random walk time series. When we apply this method to high-frequency time series data of the German DAX future, we find clear correlations on short time scales. In order to subtract trivial autocorrelation parts from the pattern conformity, we introduce a simple model for reproducing the antipersistent regime and use alternatively level 1 quotes. When we remove the pattern conformity of this stochastic process from the original data, remaining pattern-based correlations can be observed.
GPU accelerated Monte Carlo simulation of the 2D and 3D Ising model
The compute unified device architecture (CUDA) is a programming approach for performing scientific calculations on a graphics processing unit (GPU) as a data-parallel computing device. The programming interface allows to implement algorithms using extensions to standard C language. With continuously increased number of cores in combination with a high memory bandwidth, a recent GPU offers incredible resources for general purpose computing. First, we apply this new technology to Monte Carlo simulations of the two dimensional ferromagnetic square lattice Ising model. By implementing a variant of the checkerboard algorithm, results are obtained up to 60 times faster on the GPU than on a curren…