0000000000247109

AUTHOR

Josep Sardanyés

showing 6 related works from this author

Host–virus evolutionary dynamics with specialist and generalist infection strategies: Bifurcations, bistability, and chaos

2019

In this work, we have investigated the evolutionary dynamics of a generalist pathogen, e.g., a virus population, that evolves toward specialization in an environment with multiple host types. We have particularly explored under which conditions generalist viral strains may rise in frequency and coexist with specialist strains or even dominate the population. By means of a nonlinear mathematical model and bifurcation analysis, we have determined the theoretical conditions for stability of nine identified equilibria and provided biological interpretation in terms of the infection rates for the viral specialist and generalist strains. By means of a stability diagram, we identified stable fixed…

BistabilityPopulationGeneral Physics and AstronomyDynamical Systems (math.DS)Fixed pointParameter spaceBiologyGeneralist and specialist speciesModels Biological01 natural sciencesStability (probability)010305 fluids & plasmas0103 physical sciencesFOS: MathematicsHumansQuantitative Biology::Populations and EvolutionComputer SimulationMathematics - Dynamical SystemsQuantitative Biology - Populations and Evolution010306 general physicsEvolutionary dynamicseducationMathematical Physicseducation.field_of_studyApplied MathematicsDegenerate energy levelsPopulations and Evolution (q-bio.PE)Statistical and Nonlinear Physics3. Good healthNonlinear DynamicsEvolutionary biologyFOS: Biological sciencesHost-Pathogen InteractionsVirusesVirus Physiological Phenomena
researchProduct

Modelling temperature-dependent dynamics of single and mixed infections in a plant virus

2022

Multiple viral infection is an important issue in health and agriculture with strong impacts on society and the economy. Several investigations have dealt with the population dynamics of viruses with different dynamic properties, focusing on strain competition during multiple infections and the effects on viruses’ hosts. Recent interest has been on how multiple infections respond to abiotic factors such as temperature (T). This is especially important in the case of plant pathogens, whose dynamics could be affected significantly by global warming. However, few mathematical models incorporate the effect of T on parasite fitness, especially in mixed infections. Here, we investigate simple mat…

Abiotic componenteducation.field_of_studybiologyMathematical modelCo-infection dynamicsApplied Mathematicsmedia_common.quotation_subjectPopulationTranscritical bifurcationsRNA virusAbiotic stressbiology.organism_classificationCompetition (biology)BifurcationsCompetition modelTranscritical bifurcationThermal reaction normsEvolutionary biologyNonlinear dynamicsModeling and SimulationPlant virusDynamical systemseducationmedia_commonApplied Mathematical Modelling
researchProduct

Increasing growth temperature alters the within-host competition of viral strains and influences virus genetic variation

2020

AbstractThe emergence of viral diseases in plant crops hamper the sustainability of food production, and this may be boosted by global warming. Concurrently, mixed viral infections are becoming common in plants, of which epidemiology are unpredictable due to within-host virus-virus interactions. However, the extent in which the combined effect of variations in the abiotic components of the plant ecological niche (e.g., temperature) and the prevalence of mixed infections (i.e., within-host interactions among viruses) affect the evolutionary dynamics of viral populations is not well understood. Here, we explore the interplay between ecological and evolutionary factors during viral infections,…

Ecological nicheGeneticsGenetic diversityViral replicationHost (biology)virusesmedia_common.quotation_subjectGenetic variationBiologyEvolutionary dynamicsCompetition (biology)Virusmedia_common
researchProduct

Viral replication modes in single-peak fitness landscapes: A dynamical systems analysis

2017

Positive-sense, single-stranded RNA viruses are important pathogens infecting almost all types of organisms. Experimental evidence from distributions of mutations and from viral RNA amplification suggest that these pathogens may follow different RNA replication modes, ranging from the stamping machine replication (SMR) to the geometric replication (GR) mode. Although previous theoretical work has focused on the evolutionary dynamics of RNA viruses amplifying their genomes with different strategies, little is known in terms of the bifurcations and transitions involving the so-called error threshold (mutation-induced dominance of mutants) and lethal mutagenesis (extinction of all sequences du…

0301 basic medicineStatistics and ProbabilityRNA virusesMutation rateDynamical systems theoryFitness landscapeMutantBiologyVirus ReplicationGenomeModels BiologicalGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciencesBifurcations0302 clinical medicineMutation RateSingle-peak fitness landscapeError thresholdDynamical systemsReplication modesDifferentiable dynamical systemsEvolutionary dynamics51 - MatemàtiquesGenetics51General Immunology and MicrobiologyModels GeneticApplied MathematicsRNA:Matemàtiques i estadística [Àrees temàtiques de la UPC]General MedicineMutation AccumulationSistemes dinàmics diferenciables030104 developmental biologyViral replicationMutagenesisModeling and SimulationMatemàtiquesGeneral Agricultural and Biological Sciences030217 neurology & neurosurgery
researchProduct

Increasing temperature alters the within-host competition of viral strains and influences virus genetic variability

2021

Environmental conditions can affect viral accumulation, virulence and adaptation, which have implications in the disease outcomes and efficiency of control measures. Concurrently, mixed viral infections are relevant in plants, being their epidemiology shaped by within-host virus–virus interactions. However, the extent in which the combined effect of variations in abiotic components of the plant ecological niche and the prevalence of mixed infections affect the evolutionary dynamics of viral populations is not well understood. Here, we explore the interplay between ecological and evolutionary factors during viral infections and show that isolates of two strains of Pepino mosaic potexvirus co…

0106 biological sciencesMixed infectionsvirusesPlant virusVirulenceBiologyEvolutionary ecology01 natural sciencesMicrobiology03 medical and health sciencesplant virusenvironmental factorsVirologyPlant virusgenetic variabilityEnvironmental factorsAcademicSubjects/MED00860Genetic variabilityEvolutionary dynamics030304 developmental biologyGenetics0303 health sciencesGenetic diversityHost (biology)mixed infectionsAcademicSubjects/SCI01130AcademicSubjects/SCI02285evolutionary ecologyGenetic variabilityEvolutionary ecologyAdaptationResearch Article010606 plant biology & botany
researchProduct

Theoretical conditions for the coexistence of viral strains with differences in phenotypic traits : A bifurcation analysis

2019

We investigate the dynamics of a wild-type viral strain which generates mutant strains differing in phenotypic properties for infectivity, virulence and mutation rates. We study, by means of a mathematical model and bifurcation analysis, conditions under which the wild-type and mutant viruses, which compete for the same host cells, can coexist. The coexistence conditions are formulated in terms of the basic reproductive numbers of the strains, a maximum value of the mutation rate and the virulence of the pathogens. The analysis reveals that parameter space can be divided into five regions, each with distinct dynamics, that are organized around degenerate Bogdanov–Takens and zero-Hopf bifurc…

1001infection dynamicsMutation rate6EpidemiologyMutantVirulenceBiology01 natural sciences87010305 fluids & plasmas03 medical and health sciencesBifurcations1190103 physical sciences1008mathematical biologylcsh:Science51 - Matemàtiques030304 developmental biologyGeneticsInfectivityvirus evolution0303 health sciencesMathematical and theoretical biologyMultidisciplinaryStrain (chemistry)Infection dynamicsPhenotypic traitVirus evolutionViral evolutionMathematical biologyepidemiologylcsh:QMatemàtiquesbifurcationsMathematicsResearch Article
researchProduct