0000000000247131

AUTHOR

Alberto Catena

showing 5 related works from this author

Amorphous hydrogenated carbon (a-C:H) depositions on polyoxymethylene: Substrate influence on the characteristics of the developing coatings

2016

Abstract After oxygen plasma treatment polyoxymethylene (POM) material was exposed to acetylene plasma to progressively deposit two different types of amorphous hydrogenated carbon (a-C:H) films. Radio frequency plasma-enhanced chemical vapor deposition (RF-PECVD) was used to generate both plasma processes. The surface morphology of the coated samples has been investigated by atomic force microscopy (AFM) and their chemical composition by Diffusive Reflectance Infrared Fourier Transform (DRIFT) and Raman spectroscopy. Results revealed the absence of a solid interlayer formation between the a-C:H films and POM. The in sequence exposure of oxygen and acetylene plasma on POM substrate prevents…

Materials Chemistry2506 Metals and AlloysMaterials sciencechemistry.chemical_elementSurfaces Coatings and Film02 engineering and technologyChemical vapor depositionCondensed Matter Physic01 natural scienceschemistry.chemical_compoundsymbols.namesake0103 physical sciencesMaterials ChemistryPolyethylene terephthalateComposite materialRF-PECVDRaman010302 applied physicsPolyoxymethyleneChemistry (all)Settore FIS/01 - Fisica SperimentaleSurfaces and InterfacesGeneral ChemistryPolyethylene021001 nanoscience & nanotechnologyCondensed Matter PhysicsSurfaces Coatings and FilmsAmorphous solidDRIFTchemistryChemical engineeringDiamond-like carbon (DLC)symbolsHigh-density polyethyleneAFM0210 nano-technologyRaman spectroscopySurface morphologyCarbonSurfaces and Interface
researchProduct

Morphological and Chemical Evolution of Gradually Deposited Diamond-Like Carbon Films on Polyethylene Terephthalate: From Subplantation Processes to …

2016

Diamond-like carbon (DLC) films on polyethylene terephthalate (PET) are nowadays intensively studied composites due to their excellent gas barrier properties and biocompatibility. Despite their applicative features being highly explored, the interface properties and structural film evolution of DLC coatings on PET during deposition processes are still sparsely investigated. In this study two different types of DLC films were gradually deposited on PET by radio frequency plasma-enhanced chemical vapor deposition (RF-PECVD) using acetylene plasma. The surface morphology of the deposited samples has been analyzed by atomic force microscopy (AFM). Their chemical composition was investigated by …

Materials sciencefilm dehydrogenationDiamond-like carbonchemistry.chemical_elementgrain analysiNanotechnology02 engineering and technologyChemical vapor deposition01 natural sciencesContact anglechemistry.chemical_compoundsymbols.namesake0103 physical sciencesPolyethylene terephthalateDeposition (phase transition)General Materials ScienceRF-PECVDRaman010302 applied physicsamorphous hydrogenated carbon (a-C:H)Settore FIS/01 - Fisica Sperimentaleinterlayer formation021001 nanoscience & nanotechnologyDRIFTchemistryChemical engineeringsymbolsWettingMaterials Science (all)0210 nano-technologyRaman spectroscopyCarbonACS applied materialsinterfaces
researchProduct

Evolution of the sp2 content and revealed multilayer growth of amorphous hydrogenated carbon (a-C:H) films on selected thermoplastic materials

2017

Amorphous hydrogenated carbon (a-C:H) films were gradually deposited on high-density polyethylene (HDPE), polyethylene terephthalate (PET) and polyoxymethylene (POM) via an indirect (f-type) and a direct (r-type) plasma-enhanced chemical vapor deposition (PECVD) process with acetylene plasma. The surface morphologies of the thicker r-depositions on the three different thermoplastics have been analyzed by atomic force microscopy (AFM) at varying micrometer scales. Absorbance spectroscopy has been used to characterize the optical properties of all coatings. Intrinsic stress release phenomena are revealed on thicker layers through the detection of characteristic surface corrugations. Based on …

Materials science02 engineering and technologyChemical vapor deposition01 natural sciencesContact anglechemistry.chemical_compoundPlasma-enhanced chemical vapor depositionSurface corrugation0103 physical sciencesPolyethylene terephthalateGeneral Materials ScienceComposite materialStress release phenomenaTauc gap010302 applied physicsPolyoxymethyleneChemistry (all)Settore FIS/01 - Fisica SperimentaleGeneral Chemistry021001 nanoscience & nanotechnologyDifferent sp2 clusterAmorphous solidDiamond-like carbon (DLC)chemistryHigh-density polyethylene0210 nano-technologyLayer (electronics)Carbon
researchProduct

Characteristics of industrially manufactured amorphous hydrogenated carbon (a-C:H) depositions on high-density polyethylene

2016

Industrially high-density polyethylene (HDPE) was successively covered by two types of amorphous hydrogenated carbon (a-C:H) films, one more flexible (f-type) and the other more robust (r-type). The films have been grown by radio frequency plasma-enhanced chemical vapor deposition (RF-PECVD) technique with acetylene plasma. The surface morphology of both types has been studied by atomic force microscopy (AFM) and scanning electron microscopy (SEM). Contact angle measurements and Raman spectroscopy analysis were done to investigate the surface wettability and carbon chemical composition. Both types display similar morphology and grain growth pattern. Contact angle measurements revealed surfa…

010302 applied physicsMaterials scienceChemistry (all)Settore FIS/01 - Fisica Sperimentalechemistry.chemical_elementNanotechnology02 engineering and technologyGeneral ChemistryChemical vapor depositionPolyethylene021001 nanoscience & nanotechnology01 natural sciencesAmorphous solidContact angleGrain growthchemistry.chemical_compoundCarbon filmAmorphous carbonChemical engineeringchemistry0103 physical sciencesGeneral Materials Science0210 nano-technologyCarbon
researchProduct

Surface morphology and grain analysis of successively industrially grown amorphous hydrogenated carbon films (a-C:H) on silicon

2015

Abstract Silicon (1 0 0) has been gradually covered by amorphous hydrogenated carbon (a-C:H) films via an industrial process. Two types of these diamond-like carbon (DLC) coatings, one more flexible (f-DLC) and one more robust (r-DLC), have been investigated. Both types have been grown by a radio frequency plasma-enhanced chemical vapor deposition (RF-PECVD) technique with acetylene plasma. Surface morphologies have been studied in detail by atomic force microscopy (AFM) and Raman spectroscopy has been used to investigate the DLC structure. Both types appeared to have very similar morphology and sp 2 carbon arrangement. The average height and area for single grains have been analyzed for al…

Materials scienceSiliconSettore FIS/01 - Fisica SperimentaleDiamond Like Carbon Raman SpectroscopyGeneral Physics and Astronomychemistry.chemical_elementNanotechnologySurfaces and InterfacesGeneral ChemistryChemical vapor depositionCondensed Matter PhysicsSurfaces Coatings and FilmsAmorphous solidsymbols.namesakeCarbon filmChemical engineeringchemistryAmorphous carbonsymbolsRaman spectroscopyCarbonDeposition (law)Applied Surface Science
researchProduct