0000000000247144

AUTHOR

Ricardo Pardal

0000-0003-1085-0714

showing 3 related works from this author

An O2-sensitive glomus cell-stem cell synapse induces carotid body growth in chronic hypoxia.

2013

Summary Neural stem cells (NSCs) exist in germinal centers of the adult brain and in the carotid body (CB), an oxygen-sensing organ that grows under chronic hypoxemia. How stem cell lineage differentiation into mature glomus cells is coupled with changes in physiological demand is poorly understood. Here, we show that hypoxia does not affect CB NSC proliferation directly. Rather, mature glomus cells expressing endothelin-1, the O 2 -sensing elements in the CB that secrete neurotransmitters in response to hypoxia, establish abundant synaptic-like contacts with stem cells, which express endothelin receptors, and instruct their growth. Inhibition of glomus cell transmitter release or their sel…

medicine.medical_specialtyMice TransgenicBiologyGeneral Biochemistry Genetics and Molecular BiologyProlyl HydroxylasesMiceGlomus cellNeural Stem CellsInternal medicinemedicineAnimalsRats WistarCell ProliferationCarotid BodyCell growthBiochemistry Genetics and Molecular Biology(all)Germinal centerCell DifferentiationHypoxia (medical)Respiratory CenterNeural stem cellRatsOxygenEndocrinologymedicine.anatomical_structureCarotid bodyStem cellmedicine.symptomEndothelin receptorCell
researchProduct

Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes

2003

Recent studies have suggested that bone marrow cells possess a broad differentiation potential, being able to form new liver cells, cardiomyocytes and neurons1,2. Several groups have attributed this apparent plasticity to ‘transdifferentiation’3,4,5. Others, however, have suggested that cell fusion could explain these results6,7,8,9. Using a simple method based on Cre/lox recombination to detect cell fusion events, we demonstrate that bone-marrow-derived cells (BMDCs) fuse spontaneously with neural progenitors in vitro. Furthermore, bone marrow transplantation demonstrates that BMDCs fuse in vivo with hepatocytes in liver, Purkinje neurons in the brain and cardiac muscle in the heart, resul…

Cell typeCell signalingBone Marrow CellsBiologyBioinformaticsGiant CellsModels BiologicalCell FusionMicePurkinje CellsmedicineAnimalsMyocyteMyocytes CardiacProgenitor cellBone Marrow TransplantationMultidisciplinaryCell fusionStem CellsTransdifferentiationCell DifferentiationCell cycleCell biologyMice Inbred C57BLmedicine.anatomical_structureHepatocytesBone marrow
researchProduct

Resistance of subventricular neural stem cells to chronic hypoxemia despite structural disorganization of the germinal center and impairment of neuro…

2015

Xavier d'Anglemont de Tassigny,1,* M Salomé Sirerol-Piquer,2,3,* Ulises Gómez-Pinedo,4 Ricardo Pardal,1 Sonia Bonilla,1 Vivian Capilla-Gonzalez,2 Ivette López-López,1 Francisco Javier De la Torre-Laviana,1 José Manuel García-Verdugo,2,3 José López-Barneo1,3 1Medical Physiology and Biophysics Department, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain; 2Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain; 3Network Center of Biomedical Research on Neurodegenerati…

Pathologymedicine.medical_specialtyNeurogenesisSubventricular zoneBiologyHypoxia (medical)ultrastructureNeural stem cellOligodendrocyteHypoxemiachronic hypoxemiamedicine.anatomical_structurenervous systemNeuroblastImmunologymedicinesubventricular germinal nichemedicine.symptomProgenitor cellHypoxianeuronal differentiationoligodendrocyte survivalOriginal Researchneural stem cellsHypoxia
researchProduct