0000000000247638
AUTHOR
David Rasch
Fermionic transport and out-of-equilibrium dynamics in a homogeneous Hubbard model with ultracold atoms
The transport measurements of an interacting fermionic quantum gas in an optical lattice provide a direct experimental realization of the Hubbard model—one of the central models for interacting electrons in solids—and give insights into the transport properties of many-body phases in condensed-matter physics.
Metallic and Insulating Phases of Repulsively Interacting Fermions in a 3D Optical Lattice
The fermionic Hubbard model plays a fundamental role in the description of strongly correlated materials. Here we report on the realization of this Hamiltonian using a repulsively interacting spin mixture of ultracold $^{40}$K atoms in a 3D optical lattice. We have implemented a new method to directly measure the compressibility of the quantum gas in the trap using in-situ imaging and independent control of external confinement and lattice depth. Together with a comparison to ab-initio Dynamical Mean Field Theory calculations, we show how the system evolves for increasing confinement from a compressible dilute metal over a strongly-interacting Fermi liquid into a band insulating state. For …