0000000000247641

AUTHOR

Thorsten Best

showing 3 related works from this author

Fermionic transport and out-of-equilibrium dynamics in a homogeneous Hubbard model with ultracold atoms

2012

The transport measurements of an interacting fermionic quantum gas in an optical lattice provide a direct experimental realization of the Hubbard model—one of the central models for interacting electrons in solids—and give insights into the transport properties of many-body phases in condensed-matter physics.

Condensed Matter::Quantum GasesPhysicsOptical latticeHubbard modelCondensed matter physicsHomogeneousQuantum gasUltracold atomQuantum mechanicsGeneral Physics and AstronomyElectronLattice model (physics)Nature Physics
researchProduct

Time-resolved observation of coherent multi-body interactions in quantum phase revivals

2010

Interactions between microscopic particles are usually described as two-body interactions, although it has been shown that higher order multi-body interactions could give rise to novel quantum phases with intriguing properties. This paper demonstrates effective six-body interactions in a system of ultracold bosonic atoms in a three-dimensional optical lattice. The coherent multi-particle interactions observed here open a new window for simulations of effective field theories and may help to enable the realization of novel topologically ordered many-body quantum phases. Interactions between microscopic particles are usually described as two-body interactions, although it has been shown that …

PhysicsQuantum phase transitionOpen quantum systemMultidisciplinaryQuantum dynamicsQuantum mechanicsPrincipal quantum numberCavity quantum electrodynamicsQuantum simulatorQuantum phasesQuantum numberNature
researchProduct

Anomalous Expansion of Attractively Interacting Fermionic Atoms in an Optical Lattice

2010

Strong correlations can dramatically modify the thermodynamics of a quantum many-particle system. Especially intriguing behaviour can appear when the system adiabatically enters a strongly correlated regime, for the interplay between entropy and strong interactions can lead to counterintuitive effects. A well known example is the so-called Pomeranchuk effect, occurring when liquid 3He is adiabatically compressed towards its crystalline phase. Here, we report on a novel anomalous, isentropic effect in a spin mixture of attractively interacting fermionic atoms in an optical lattice. As we adiabatically increase the attraction between the atoms we observe that the gas, instead of contracting, …

Condensed Matter::Quantum GasesPhysicsOptical latticeMultidisciplinaryCondensed matter physicsHubbard modelIsentropic processStrongly Correlated Electrons (cond-mat.str-el)High Energy Physics::LatticeFOS: Physical sciencesBose–Hubbard modelCondensed Matter - Strongly Correlated ElectronsQuantum Gases (cond-mat.quant-gas)Quantum mechanicsLattice (order)Condensed Matter - Quantum GasesQuantum
researchProduct