0000000000247643

AUTHOR

Sebastian Will

0000-0003-2672-5264

Fermionic transport and out-of-equilibrium dynamics in a homogeneous Hubbard model with ultracold atoms

The transport measurements of an interacting fermionic quantum gas in an optical lattice provide a direct experimental realization of the Hubbard model—one of the central models for interacting electrons in solids—and give insights into the transport properties of many-body phases in condensed-matter physics.

research product

Observation of coherent quench dynamics in a metallic many-body state of fermionic atoms

Quantum simulation with ultracold atoms has become a powerful technique to gain insight into interacting many-body systems. In particular, the possibility to study nonequilibrium dynamics offers a unique pathway to understand correlations and excitations in strongly interacting quantum matter. So far, coherent nonequilibrium dynamics has exclusively been observed in ultracold many-body systems of bosonic atoms. Here we report on the observation of coherent quench dynamics of fermionic atoms. A metallic state of ultracold spin-polarised fermions is prepared along with a Bose-Einstein condensate in a shallow three-dimensional optical lattice. After a quench that suppresses tunnelling between …

research product

Metallic and Insulating Phases of Repulsively Interacting Fermions in a 3D Optical Lattice

The fermionic Hubbard model plays a fundamental role in the description of strongly correlated materials. Here we report on the realization of this Hamiltonian using a repulsively interacting spin mixture of ultracold $^{40}$K atoms in a 3D optical lattice. We have implemented a new method to directly measure the compressibility of the quantum gas in the trap using in-situ imaging and independent control of external confinement and lattice depth. Together with a comparison to ab-initio Dynamical Mean Field Theory calculations, we show how the system evolves for increasing confinement from a compressible dilute metal over a strongly-interacting Fermi liquid into a band insulating state. For …

research product

Time-resolved observation of coherent multi-body interactions in quantum phase revivals

Interactions between microscopic particles are usually described as two-body interactions, although it has been shown that higher order multi-body interactions could give rise to novel quantum phases with intriguing properties. This paper demonstrates effective six-body interactions in a system of ultracold bosonic atoms in a three-dimensional optical lattice. The coherent multi-particle interactions observed here open a new window for simulations of effective field theories and may help to enable the realization of novel topologically ordered many-body quantum phases. Interactions between microscopic particles are usually described as two-body interactions, although it has been shown that …

research product

Trapping of ultracold atoms in a hollow-core photonic crystal fiber

Ultracold sodium atoms have been trapped inside a hollow-core optical fiber. The atoms are transferred from a free space optical dipole trap into a trap formed by a red-detuned gaussian light mode confined to the core of the fiber. We show that at least 5% of the atoms held initially in the free space trap can be loaded into the core of the fiber and retrieved outside.

research product

Anomalous Expansion of Attractively Interacting Fermionic Atoms in an Optical Lattice

Strong correlations can dramatically modify the thermodynamics of a quantum many-particle system. Especially intriguing behaviour can appear when the system adiabatically enters a strongly correlated regime, for the interplay between entropy and strong interactions can lead to counterintuitive effects. A well known example is the so-called Pomeranchuk effect, occurring when liquid 3He is adiabatically compressed towards its crystalline phase. Here, we report on a novel anomalous, isentropic effect in a spin mixture of attractively interacting fermionic atoms in an optical lattice. As we adiabatically increase the attraction between the atoms we observe that the gas, instead of contracting, …

research product