0000000000247644
AUTHOR
John E. Proctor
Monazite-type SrCrO4 under compression
We report a high-pressure study of monoclinic monazite-type SrCrO4 up to 26 GPa. Therein we combined x-ray diffraction, Raman and optical-absorption measurements with ab initio calculations, to find a pressure-induced structural phase transition of SrCrO4 near 8-9 GPa. Evidence of a second phase transition was observed at 10-13 GPa. The crystal structures of the high-pressure phases were assigned to the tetragonal scheelite-type and monoclinic AgMnO4-type structures. Both transitions produce drastic changes in the electronic band gap and phonon spectrum of SrCrO4. We determined the pressure evolution of the band gap for the low-pressure and high-pressure phases as well as the frequencies an…
On the high-pressure phase stability and elastic properties ofβ-titanium alloys
We have studied the compressibility and stability of different β-titanium alloys at high pressure, including binary Ti–Mo, Ti–24Nb–4Zr–8Sn (Ti2448) and Ti–36Nb–2Ta–0.3O (gum metal). We observed stability of the β phase in these alloys to 40 GPa, well into the ω phase region in the P–T diagram of pure titanium. Gum metal was pressurised above 70 GPa and forms a phase with a crystal structure similar to the η phase of pure Ti. The bulk moduli determined for the different alloys range from 97 ± 3 GPa (Ti2448) to 124 ± 6 GPa (Ti–16.8Mo–0.13O).
Equation of state and high-pressure/high-temperature phase diagram of magnesium
The phase diagram of magnesium has been investigated to 211 GPa at 300 K, and to 105 GPa at 4500 K, by using a combination of x-ray diffraction and resistive and laser heating. The ambient pressure hcp structure is found to start transforming to the bcc structure at ∼45 GPa, with a large region of phase-coexistence that becomes smaller at higher temperatures. The bcc phase is stable to the highest pressures reached. The hcp-bcc phase boundary has been studied on both compression and decompression, and its slope is found to be negative and steeper than calculations have previously predicted. The laser-heating studies extend the melting curve of magnesium to 105 GPa and suggest that, at the h…
Theoretical and Experimental Study of the Crystal Structures, Lattice Vibrations, and Band Structures of Monazite-Type PbCrO4, PbSeO4, SrCrO4, and SrSeO4
The crystal structures, lattice vibrations, and electronic band structures of PbCrO4, PbSeO4, SrCrO4, and SrSeO4 were studied by ab initio calculations, Raman spectroscopy, X-ray diffraction, and optical-absorption measurements. Calculations properly describe the crystal structures of the four compounds, which are isomorphic to the monazite structure and were confirmed by X-ray diffraction. Information is also obtained on the Raman- and IR-active phonons, with all of the vibrational modes assigned. In addition, the band structures and electronic densities of states of the four compounds were determined. All are indirect-gap semiconductors. In particular, chromates are found to have band gap…
High Pressure Raman, Optical Absorption, and Resistivity Study of SrCrO4
We studied the electronic and vibrational properties of monazite-type SrCrO4 under compression. The study extended the pressure range of previous studies from 26 to 58 GPa. The existence of two previously reported phase transitions was confirmed at 9 and 14 GPa, and two new phase transitions were found at 35 and 48 GPa. These transitions involve several changes in the vibrational and transport properties with the new high-pressure phases having a conductivity lower than that of the previously known phases. No evidence of chemical decomposition or metallization of SrCrO4 was detected. A tentative explanation for the reported observations is discussed.
Melting curve and phase diagram of vanadium under high-pressure and high-temperature conditions
Melting curve and phase diagram of vanadium under high-pressure and high-temperature conditions We report a combined experimental and theoretical study of the melting curve and the structural behavior of vanadium under extreme pressure and temperature. We performed powder x-ray-diffraction experiments up to 120 GPa and 4000 K, determining the phase boundary of the body-centered cubic-to-rhombohedral transition and melting temperatures at different pressures. Melting temperatures have also been established from the observation of temperature plateaus during laser heating, and the results from the density-functional theory calculations. Results obtained from our experiments and calculations a…