Constraining Uncertainty in Projected Gross Primary Production With Machine Learning
The terrestrial biosphere is currently slowing down global warming by absorbing about 30% of human emissions of carbon dioxide (CO2). The largest flux of the terrestrial carbon uptake is gross primary production (GPP) defined as the production of carbohydrates by photosynthesis. Elevated atmospheric CO2 concentration is expected to increase GPP (“CO2 fertilization effect”). However, Earth system models (ESMs) exhibit a large range in simulated GPP projections. In this study, we combine an existing emergent constraint on CO2 fertilization with a machine learning approach to constrain the spatial variations of multimodel GPP projections. In a first step, we use observed changes in the CO2 sea…
Compensatory water effects link yearly global land CO2 sink changes to temperature
Large interannual variations in the measured growth rate of atmospheric carbon dioxide (CO2) originate primarily from fluctuations in carbon uptake by land ecosystems1–3. It remains uncertain, however, to what extent temperature and water availability control the carbon balance of land ecosystems across spatial and temporal scales3–14. Here we use empirical models based on eddy covariance data15 and process-based models16,17 to investigate the effect of changes in temperature and water availability on gross primary productivity (GPP), terrestrial ecosystem respiration (TER) and net ecosystem exchange (NEE) at local and global scales. We find that water availability is the dominant driver of…
Water-use efficiency and transpiration across European forests during the Anthropocene
Considering the combined effects of CO2 fertilization and climate change drivers on plant physiology leads to a modest increase in simulated European forest transpiration in spite of the effects of CO2-induced stomatal closure. The Earth’s carbon and hydrologic cycles are intimately coupled by gas exchange through plant stomata1,2,3. However, uncertainties in the magnitude4,5,6 and consequences7,8 of the physiological responses9,10 of plants to elevated CO2 in natural environments hinders modelling of terrestrial water cycling and carbon storage11. Here we use annually resolved long-term δ13C tree-ring measurements across a European forest network to reconstruct the physiologically driven r…