0000000000247652

AUTHOR

Veronika Eyring

0000-0002-6887-4885

Constraining Uncertainty in Projected Gross Primary Production With Machine Learning

The terrestrial biosphere is currently slowing down global warming by absorbing about 30% of human emissions of carbon dioxide (CO2). The largest flux of the terrestrial carbon uptake is gross primary production (GPP) defined as the production of carbohydrates by photosynthesis. Elevated atmospheric CO2 concentration is expected to increase GPP (“CO2 fertilization effect”). However, Earth system models (ESMs) exhibit a large range in simulated GPP projections. In this study, we combine an existing emergent constraint on CO2 fertilization with a machine learning approach to constrain the spatial variations of multimodel GPP projections. In a first step, we use observed changes in the CO2 sea…

research product

Trace gas composition in the Asian summer monsoon anticyclone: a case study based on aircraft observations and model simulations

We present in situ measurements of the trace gas composition of the upper tropospheric (UT) Asian summer monsoon anticyclone (ASMA) performed with the High Altitude and Long Range Research Aircraft (HALO) in the frame of the Earth System Model Validation (ESMVal) campaign. Air masses with enhanced O3 mixing ratios were encountered after entering the ASMA at its southern edge at about 150 hPa on 18 September 2012. This is in contrast to the presumption that the anticyclone's interior is dominated by recently uplifted air with low O3 in the monsoon season. We also observed enhanced CO and HCl in the ASMA, which are tracers for boundary layer pollution and tropopause layer (TL) air or stratosp…

research product