0000000000247735
AUTHOR
Oliver Fischer
A strategy for the finite element modeling of FRP-confined concrete columns subjected to preload
Abstract Compressive behavior of columns strengthened by means of an outer elastic confinement provided e.g. by fiber-reinforced polymer (FRP) jackets has become a main topic in the field of structural retrofitting. In details, the problem of the response assessment of strengthened columns is still under study. Many analytical formulations have been proposed to describe the compressive behavior of confined concrete under both monotonic and cyclic loads. However, the effect of a stress/strain level in the columns already present prior to apply the confinement has been generally neglected until now, also because of the lack of well defined strategies of modeling. In this frame, here, (1) a FE…
Searching for long-lived particles beyond the Standard Model at the Large Hadron Collider
Particles beyond the Standard Model (SM) can generically have lifetimes that are long compared to SM particles at the weak scale. When produced at experiments such as the Large Hadron Collider (LHC) at CERN, these longlived particles (LLPs) can decay far from the interaction vertex of the primary proton–proton collision. Such LLP signatures are distinct from those of promptly decaying particles that are targeted by the majority of searches for new physics at the LHC, often requiring customized techniques to identify, for example, significantly displaced decay vertices, tracks with atypical properties, and short track segments. Given their non-standard nature, a comprehensive overview of LLP…
Long-lived particles at the energy frontier: the MATHUSLA physics case
We examine the theoretical motivations for long-lived particle (LLP) signals at the LHC in a comprehensive survey of Standard Model (SM) extensions. LLPs are a common prediction of a wide range of theories that address unsolved fundamental mysteries such as naturalness, dark matter, baryogenesis and neutrino masses, and represent a natural and generic possibility for physics beyond the SM (BSM). In most cases the LLP lifetime can be treated as a free parameter from the $\mu$m scale up to the Big Bang Nucleosynthesis limit of $\sim 10^7$m. Neutral LLPs with lifetimes above $\sim$ 100m are particularly difficult to probe, as the sensitivity of the LHC main detectors is limited by challenging …
Analysis-oriented stress–strain model of CRFP-confined circular concrete columns with applied preload
The compressive behavior of FRP-confined concrete is a current issue in the field of structural retrofitting. The available models well predict the stress–strain behavior under monotonic and cyclic loads. However, in the practical applications, columns that need an increasing of bearing capacity are often strengthened under serviceability load conditions, with a stress and strain state that could change the response of the reinforced systems with respect to the case of the unloaded state. In this paper, the compressive behavior of circular FRP-confined concrete columns with preload is analyzed with the introduction of a modified analysis-oriented model. Differently from the classical formul…
Simulating CFRP-confinement of concrete bridge piers under sustained loads: evaluation of the compressive capacity
The present paper deals with the evaluation of the compressive behaviour of circular concrete columns strengthened with carbon fiber reinforced polymers (CFRP) under different levels of sustained loads and subsequently loaded until failure. The aim was to compare the effect of existing stress/strain states on the axial load-strain response of bridge piers after strengthening under sustained loads. An experimental investigation was carried out on circular plain concrete columns loaded up to low, medium and high ratios of the concrete compression capacity before the application of the CFRP-confinement. After the strengthening process, the columns were loaded until failure, comparing the resul…
Experimental investigation on the compressive behavior of short-term preloaded carbon fiber reinforced polymer-confined concrete columns
Strengthening of concrete columns with fiber reinforced polymer sheets provides a good improvement to the existing structural members in terms of load and strain capacity due to the properties of the composite jacket. A proper knowledge of the load–strain response of the composite members is necessary to design retrofitting intervention of existing structures; however, so far the available design methods do not allow to take into account the effect of the possible presence of service loads on the compressive behavior of the reinforced columns. An experimental investigation on the compressive behavior of preloaded circular concrete columns reinforced with carbon fiber reinforced polymer was …