Translational anomaly of chiral fermions in two dimensions
It is well known that a quantized two-dimensional Weyl fermion coupled to gravity spoils general covariance and breaks the covariant conservation of the energy-momentum tensor. In this brief article, we point out that the quantum conservation of the momentum can also fail in flat spacetime, provided the Weyl fermion is coupled to a time-varying homogeneous electric field. This signals a quantum anomaly of the space-translation symmetry, which has not been highlighted in the literature so far.
Note on the pragmatic mode-sum regularization method: Translational-splitting in a cosmological background
The point-splitting renormalization method offers a prescription to calculate finite expectation values of quadratic operators constructed from quantum fields in a general curved spacetime. It has been recently shown by Levi and Ori that when the background metric possesses an isometry, like stationary or spherically symmetric black holes, the method can be upgraded into a pragmatic procedure of renormalization that produces efficient numerical calculations. In this note we show that when the background enjoys three-dimensional spatial symmetries, like homogeneous expanding universes, the above pragmatic regularization technique reduces to the well established adiabatic regularization metho…
Adiabatic regularization for Dirac fields in time-varying electric backgrounds
The adiabatic regularization method was originally proposed by Parker and Fulling to renormalize the energy-momentum tensor of scalar fields in expanding universes. It can be extended to renormalize the electric current induced by quantized scalar fields in a time-varying electric background. This can be done in a way consistent with gravity if the vector potential is considered as a variable of adiabatic order one. Assuming this, we further extend the method to deal with Dirac fields in four spacetime dimensions. This requires a self-consistent ansatz for the adiabatic expansion, in presence of a prescribed time-dependent electric field, which is different from the conventional expansion u…