0000000000247774
AUTHOR
Jose Navarro-salas
Translational anomaly of chiral fermions in two dimensions
It is well known that a quantized two-dimensional Weyl fermion coupled to gravity spoils general covariance and breaks the covariant conservation of the energy-momentum tensor. In this brief article, we point out that the quantum conservation of the momentum can also fail in flat spacetime, provided the Weyl fermion is coupled to a time-varying homogeneous electric field. This signals a quantum anomaly of the space-translation symmetry, which has not been highlighted in the literature so far.
Remarks on the renormalization of primordial cosmological perturbations
We briefly review the need to perform renormalization of inflationary perturbations to properly work out the physical power spectra. We also summarize the basis of (momentum-space) renormalization in curved spacetime and address several misconceptions found in recent literature on this subject.
Inflation, renormalization, and CMB anisotropies
5 páginas.-- Trabajo presentado al Spanish Relativity Meeting (ERE 2009).-- El PDF es la versión pre-print (arXiv:1002.3914v1).
Enhanced local-type inflationary trispectrum from a non-vacuum initial state
We compute the primordial trispectrum for curvature perturbations produced during cosmic inflation in models with standard kinetic terms, when the initial quantum state is not necessarily the vacuum state. The presence of initial perturbations enhances the trispectrum amplitude for configuration in which one of the momenta, say $k_3$, is much smaller than the others, $k_3 \ll k_{1,2,4}$. For those squeezed configurations the trispectrum acquires the so-called local form, with a scale dependent amplitude that can get values of order $ \epsilon ({k_1}/{k_3})^2$. This amplitude can be larger than the prediction of the so-called Maldacena consistency relation by a factor $10^6$, and can reach t…
Inflation, quantum fields, and CMB anisotropies
Revert field Inflationary cosmology has proved to be the most successful at predicting the properties of the anisotropies observed in the cosmic microwave background (CMB). In this essay we show that quantum field renormalization significantly influences the generation of primordial perturbations and hence the expected measurable imprint of cosmological inflation on the CMB. However, the new predictions remain in agreement with observation, and in fact favor the simplest forms of inflation. In the near future, observations of the influence of gravitational waves from the early universe on the CMB will test our new predictions.
Static quantum corrections to the Schwarzschild spacetime
We study static quantum corrections of the Schwarzschild metric in the Boulware vacuum state. Due to the absence of a complete analytic expression for the full semiclassical Einstein equations we approach the problem by considering the s-wave approximation and solve numerically the associated backreaction equations. The solution, including quantum effects due to pure vacuum polarization, is similar to the classical Schwarzschild solution up to the vicinity of the classical horizon. However, the radial function has a minimum at a time-like surface close to the location of the classical event horizon. There the g_{00} component of the metric reaches a very small but non-zero value. The analys…
Role of gravity in the pair creation induced by electric fields
We analyze the pair production induced by homogenous, time-dependent electric fields in an expanding space-time background. We point out that, in obtaining the semiclassical Maxwell equations, two distinct notions of adiabatic renormalization are possible. In Minkowski space the two recipes turn out to be equivalent. However, in the presence of gravity only the recipe requiring an adiabatic hierarchy between the gravitational and the gauge field is consistent with the conservation of the energy-momentum tensor.
Short distances, black holes, and TeV gravity
The Hawking effect can be rederived in terms of two-point functions and in such a way that it makes it possible to estimate, within the conventional semiclassical theory, the contribution of ultrashort distances at $I^+$ to the Planckian spectrum. Thermality is preserved for black holes with $��l_P << 1$. However, deviations from the Planckian spectrum can be found for mini black holes in TeV gravity scenarios, even before reaching the Planck phase.
Acceleration radiation, transition probabilities, and trans-Planckian physics
An important question in the derivation of the acceleration radiation, which also arises in Hawking's derivation of black hole radiance, is the need to invoke trans-Planckian physics in describing the creation of quanta. We point out that this issue can be further clarified by reconsidering the analysis in terms of particle detectors, transition probabilities and local two-point functions. By writing down separate expressions for the spontaneous-and induced-transition probabilities of a uniformly accelerated detector, we show that the bulk of the effect comes from the natural (non-trans-Planckian) scale of the problem, which largely diminishes the importance of the trans-Planckian sector. T…
New solutions of the hamiltonian and diffeomorphism constraints of quantum gravity from a highest weight loop representation
Abstract We introduce a highest weight type representation of the Rovelli-Smolin algebra of loop observables for quantum gravity. In terms of this representation, new solutions of the hamiltonian and diffeomorphism constraints are given. Assuming the locality of the quantum hamiltonian constraint we show that any functional depending on the generalized link class of the disjoint union of arbitrary simple loops is a solution. Finally we argue that this is the general solution in the irreducible representation space.
EINSTEIN–PLANCK FORMULA, EQUIVALENCE PRINCIPLE, AND BLACK HOLE RADIANCE
The presence of gravity implies corrections to the Einstein-Planck formula $E=h \nu$. This gives hope that the divergent blueshift in frequency, associated to the presence of a black hole horizon, could be smoothed out for the energy. Using simple arguments based on Einstein's equivalence principle we show that this is only possible if a black hole emits, in first approximation, not just a single particle, but thermal radiation.
Gravity and handedness of photons
Vacuum fluctuations of quantum fields are altered in presence of a strong gravitational background, with important physical consequences. We argue that a non-trivial spacetime geometry can act as an optically active medium for quantum electromagnetic radiation, in such a way that the state of polarization of radiation changes in time, even in the absence of electromagnetic sources. This is a quantum effect, and is a consequence of an anomaly related to the classical invariance under electric-magnetic duality rotations in Maxwell theory.
Adiabatic regularization for Dirac fields in time-varying electric backgrounds
The adiabatic regularization method was originally proposed by Parker and Fulling to renormalize the energy-momentum tensor of scalar fields in expanding universes. It can be extended to renormalize the electric current induced by quantized scalar fields in a time-varying electric background. This can be done in a way consistent with gravity if the vector potential is considered as a variable of adiabatic order one. Assuming this, we further extend the method to deal with Dirac fields in four spacetime dimensions. This requires a self-consistent ansatz for the adiabatic expansion, in presence of a prescribed time-dependent electric field, which is different from the conventional expansion u…