0000000000247819

AUTHOR

Paolo Giglio

showing 4 related works from this author

ATHENA WFI optical blocking filters development status toward the end of the instrument phase-A

2018

Copyright 2018 Society of Photo-Optical Instrumentation Engineers (SPIE). One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited. The Wide Field Imager (WFI) is one of the two instruments of the ATHENA astrophysics space mission approved by ESA as the second large mission in the Cosmic Vision 2015-2025 Science Programme. The WFI, based on a large array of depleted field effect transistors (DEPFET), will provide imaging in the 0.2-15 keV band over a 40'x40' field of view, simultaneously with spectrally an…

X-ray detectorCosmic VisionPhotonX-ray detectorWide Field ImagerField of viewCondensed Matter Physic7. Clean energy01 natural sciences010309 opticsX-ray astronomyOpticsSettore FIS/05 - Astronomia E Astrofisica0103 physical sciencesAthenaSpectral resolutionElectrical and Electronic EngineeringOptical blocking filter010303 astronomy & astrophysicsPhysicsCMOS sensorbusiness.industryElectronic Optical and Magnetic MaterialDetectorComputer Science Applications1707 Computer Vision and Pattern RecognitionPhoton countingApplied MathematicActive pixel sensor13. Climate actionbusinessDEPFET
researchProduct

Deformation analysis of ATHENA test filters made of plastic thin films supported by a mesh under differential static pressure

2019

Within ESA Cosmic Vision 2015-2025 Science Program, ATHENA was selected to be a Large-class high energy astrophysics space mission. The observatory will be equipped with two interchangeable focal plane detectors named X-Ray Integral Field Unit (X-IFU) and Wide Field Imager (WFI). In order to optimally exploit the detector sensitivity, X-ray transparent filters are required. Such filters need to be extremely thin to maximize the X-ray transparency, that is, no more than a few tens of nm, still they must be able to sustain the severe stresses experienced during launch. Partially representative test filters were made with a thin polypropylene film, coated with Ti, and supported by a thin highl…

Materials scienceOptical Profilometry Stress Analysis FEA XRay ATHENA X-IFUNumerical analysisDetectorMechanical engineeringStatic pressureDeformation (meteorology)01 natural sciencesFinite element method010309 opticsSettore ING-IND/14 - Progettazione Meccanica E Costruzione Di MacchineFilter (large eddy simulation)Settore FIS/05 - Astronomia E AstrofisicaCardinal point0103 physical sciencesThin film010306 general physics2019 IEEE 5th International Workshop on Metrology for AeroSpace (MetroAeroSpace)
researchProduct

Preliminary Mechanical Characterization of Thermal Filters for the X-IFU Instrument on Athena

2018

The X-ray Integral Field Unit (X-IFU) is one of the two instruments of the Athena astrophysics space mission approved by ESA in the Cosmic Vision Science Program. The X-IFU consists of a large array of TES microcalorimeters that will operate at ~ 50 mK inside a sophisticated cryostat. A set of thin filters, highly transparent to X-rays, will be mounted on the cryostat thermal shields in order to attenuate the IR radiative load, to attenuate RF electromagnetic interferences, and to protect the detector from contamination. In this paper, we present the current thermal filters design, describe the filter samples developed/procured so far, and present preliminary results from the ongoing charac…

PhysicsCryostatX-IFUCosmic VisionAtomic and Molecular Physics and Opticbusiness.industryDetectorShieldsX-ray microcalorimeterThermal filterCondensed Matter Physics01 natural sciencesAtomic and Molecular Physics and OpticsCharacterization (materials science)OpticsFilter (video)0103 physical sciencesThermalRadiative transferGeneral Materials ScienceAthenaMaterials Science (all)010306 general physicsbusiness010303 astronomy & astrophysics
researchProduct

ATHENA X-IFU thermal filters development status toward the end of the instrument phase-A

2018

Copyright 2018 Society of Photo-Optical Instrumentation Engineers (SPIE). One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited. The X-ray Integral Field Unit (X-IFU) is one of the two instruments of the Athena astrophysics space mission approved by ESA in the Cosmic Vision 2015-2025 Science Programme. The X-IFU consists of a large array of transition edge sensor micro-calorimeters that will operate at 100 mK inside a sophisticated cryostat. A set of thin filters, highly transparent to X-rays, will be m…

X-ray detectorCryostatCosmic VisionPhotonComputer scienceShieldsCondensed Matter Physicmicrocalorimeter01 natural sciences7. Clean energySettore FIS/05 - Astronomia E AstrofisicaX-ray Integral Field Unit (X-IFU)0103 physical sciencesthermal thin-film filterElectrical and Electronic EngineeringAerospace engineering010306 general physics010303 astronomy & astrophysicsbusiness.industryElectronic Optical and Magnetic MaterialDetectorAstrophysics::Instrumentation and Methods for AstrophysicsShot noiseComputer Science Applications1707 Computer Vision and Pattern RecognitionTransition Edge SensorApplied MathematicATHENA X-ray observatoryRadio frequencyTransition edge sensorbusinessSpace Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray
researchProduct