6533b7d5fe1ef96bd1263cf3
RESEARCH PRODUCT
ATHENA WFI optical blocking filters development status toward the end of the instrument phase-A
Ugo Lo CiceroAdam PilchSzymon PolakMarco BarberaNorbert MeidingerGregor RauwEmanuele PerinatiTeresa MineoPaolo GiglioMiroslaw RatajFabio D'ancaSalvatore SciortinoGraziella Branduardi RaymontGiancarlo ParodiLuisa SciortinoSalvo VariscoRoberto CandiaAlfonso Collurasubject
X-ray detectorCosmic VisionPhotonX-ray detectorWide Field ImagerField of viewCondensed Matter Physic7. Clean energy01 natural sciences010309 opticsX-ray astronomyOpticsSettore FIS/05 - Astronomia E Astrofisica0103 physical sciencesAthenaSpectral resolutionElectrical and Electronic EngineeringOptical blocking filter010303 astronomy & astrophysicsPhysicsCMOS sensorbusiness.industryElectronic Optical and Magnetic MaterialDetectorComputer Science Applications1707 Computer Vision and Pattern RecognitionPhoton countingApplied MathematicActive pixel sensor13. Climate actionbusinessDEPFETdescription
Copyright 2018 Society of Photo-Optical Instrumentation Engineers (SPIE). One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited. The Wide Field Imager (WFI) is one of the two instruments of the ATHENA astrophysics space mission approved by ESA as the second large mission in the Cosmic Vision 2015-2025 Science Programme. The WFI, based on a large array of depleted field effect transistors (DEPFET), will provide imaging in the 0.2-15 keV band over a 40'x40' field of view, simultaneously with spectrally and time resolved photon counting. The WFI detector is also sensitive to UV/Vis photons, with an electron-hole pair production efficiency in the UV/VIS larger than that for X-ray photons. Optically generated photo-electrons may degrade the spectral resolution as well as change the energy scale by introducing a signal offset. For this reason, the use of X-ray transparent optical blocking filters (OBFs) are needed to allow the observation of X-ray sources that present a UV/Vis bright counterpart. The OBFs design is challenging since one of the two required filters is quite large ( 160 mm × 160 mm), very thin (< 200 nm), and shall survive the mechanical load during the launch. In this paper, we review the main results of modeling and characterization tests of OBF partially representative samples, performed during the phase A study, to identify the suitable materials, optimize the design, prove that the filters can be launched in atmospheric pressure, and thus demonstrate that the chosen technology can reach the proper technical readiness before mission adoption.
year | journal | country | edition | language |
---|---|---|---|---|
2018-07-06 |