Direct sunlight facility for testing and research in HCPV
A facility for testing different components for HCPV application has been developed in the framework of "Fotovoltaico ad Alta Efficienza" (FAE) project funded by the Sicilian Regional Authority (PO FESR Sicilia 2007/2013 4.1.1.1). The testing facility is equipped with an heliostat providing a wide solar beam inside the lab, an optical bench for mounting and aligning the HCPV components, electronic equipments to characterize the I-V curves of multijunction cells operated up to 2000 suns, a system to circulate a fluid in the heat sink at controlled temperature and flow-rate, a data logging system with sensors to measure temperatures in several locations and fluid pressures at the inlet and ou…
Tests of Lobster Eye Optics for Small Space X-ray Telescope
Abstract The Lobster eye design for a grazing incidence X-ray optics provides wide field of view of the order of many degrees, for this reason it can be a convenient approach for the construction of space all-sky X-ray monitors. We present preliminary results of tests of prototype lobster eye X-ray optics in quasi parallel beam full imaging mode conducted using the 35 m long X-ray beam-line of INAF-OAPA in Palermo (Italy). X-ray images at the focal plane have been taken with a microchannel plate (MCP) detector at several energy values from 0.3 to 8 keV. The gain, the field of view and the angular resolution have been measured and compared with theoretical values.
Status of the EPIC thin and medium filters on-board XMM-Newton after more than 10 years of operation II: analysis of in-flight data
After more than ten years of operation of the EPIC camera on board the X-ray observatory XMM-Newton we have reviewed the status of its thin and medium filters by performing both analysis of data collected in-flight and laboratory measurements on on-ground back-up filters. We have investigated the status of the EPIC thin and medium filters by performing an analysis of the optical loading in the PN offset maps to gauge variations in the optical and UV transmission of the filters. We both investigated repeated observations of single optically bright targets and performed a statistical analysis of the extent of loading versus visual magnitude at different epochs. We report the results of these …
Lobster eye optics for nano-satellite x-ray monitor
The Lobster eye design for a grazing incidence X-ray optics provides wide field of view of the order of many degrees, for this reason it would be a convenient approach for the construction of space X-ray monitors. In this paper, we compare previously reported measurements of prototype lobster eye X-ray optics called P-25 with computer simulations and discuss differences between the theoretical end experimentally obtained results. Usability of this prototype lobster eye and manufacturing technology for the nano-satellite mission is assessed. The specific scientific goals are proposed.
ATHENA WFI optical blocking filters development status toward the end of the instrument phase-A
Copyright 2018 Society of Photo-Optical Instrumentation Engineers (SPIE). One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited. The Wide Field Imager (WFI) is one of the two instruments of the ATHENA astrophysics space mission approved by ESA as the second large mission in the Cosmic Vision 2015-2025 Science Programme. The WFI, based on a large array of depleted field effect transistors (DEPFET), will provide imaging in the 0.2-15 keV band over a 40'x40' field of view, simultaneously with spectrally an…
The Palermo XACT facility: a new 35 m long soft x-ray beam-line for the development and calibration of next-generation x-ray observatories
The X-ray Astronomy Calibration and Testing (XACT) facility of the Instituto Nazionale di Astrofisica (INAF) at Osservatorio Astronomico di Palermo has recently undergone a major upgrade with the design and construction of a 35 meter long vacuum beam-line operating in the soft X-rays (0.1-20 keV) and the addition of new hardware to meet the requirements for testing and calibration of next generation X-ray missions. We report on the present configuration of the facility and briefly survey the range of its applications.
Planar Array Technology for the Fabrication of Germanium X-Ray Microcalorimeters
Several technologies are presently competing for measuring the temperature increase in cryogenic micro-calorimeters used as high resolution energy-dispersive X-ray detectors. Doped germanium, whose resistivity depends on temperature, is a promising material for this purpose, because of its comparatively low specific heat and the possibility of making wafers with high doping uniformity by neutron transmutation. Presently, Ge-based microcalorimeters are still micro-machined and manually assembled. Here we present a planar approach to the fabrication of 2-D arrays of microcalorimeters and show the preliminary technological results.
Thin-shell plastic lenses for space and laboratory applications
We have identified an inexpensive, readily available, mechanically stable, extremely smooth, elastic, and mechanically uniform plastic suitable for thin film X-ray optics. Polyethylene terephthalate (PET) is easily deformed without losing its elastic properties or surface smoothness. Most important, PET can be coated with mono- or multilayers that reflect X-rays at grazing incidence. We have used these properties to produce X-ray optics made either as a concentric nest of cylinders or as a spiral. We have produced accurately formed shells in precisely machined vacuum mandresl or used a pin and wheel structure to form a continuously wound spiral. The wide range of medical, industrial and sci…
Preliminary Mechanical Characterization of Thermal Filters for the X-IFU Instrument on Athena
The X-ray Integral Field Unit (X-IFU) is one of the two instruments of the Athena astrophysics space mission approved by ESA in the Cosmic Vision Science Program. The X-IFU consists of a large array of TES microcalorimeters that will operate at ~ 50 mK inside a sophisticated cryostat. A set of thin filters, highly transparent to X-rays, will be mounted on the cryostat thermal shields in order to attenuate the IR radiative load, to attenuate RF electromagnetic interferences, and to protect the detector from contamination. In this paper, we present the current thermal filters design, describe the filter samples developed/procured so far, and present preliminary results from the ongoing charac…
The thin and medium filters of the EPIC camera on-board XMM-Newton: measured performance after more than 15 years of operation
After more than 15 years of operation of the EPIC camera on board the XMM-Newton X-ray observatory, we have reviewed the status of its Thin and Medium filters. We have selected a set of Thin and Medium back-up filters among those still available in the EPIC consortium and have started a program to investigate their status by different laboratory measurements including: UV/VIS transmission, Raman scattering, X-Ray Photoelectron Spectroscopy, and Atomic Force Microscopy. Furthermore, we have investigated the status of the EPIC flight filters by performing an analysis of the optical loading in the PN offset maps to gauge variations in the optical and UV transmission. We both investigated repea…
A single stage adiabatic demagnetization refrigerator for testing x-ray microcalorimeters
A single stage Adiabatic Demagnetization Refrigerator (ADR), has been set-up at the X-ray Astronomy Calibration and Testing (XACT) facility of INAF - Osservatorio Astronomico di Palermo G.S. Vaiana, for the development and testing of cryogenic X-ray detectors for laboratory and astrophysical applications. The ADR allows to cool detectors at temperatures below 40 mK and to maintain them at constant operating temperature for many hours. We describe the design and construction of the ADR and present test results and performances.
Calibration of the XRT-SOLARB flight filters at the XACT facility of INAF-OAPA
The X-Ray Telescope (XRT) experiment on-board the Japanese satellite SOLAR-B (launch in 2006) aimed at providing full Sun field of view at ~ 1.5" angular resolution, will be equipped with two wheels of focal-plane filters to select spectral features of X-ray emission from the Solar corona, and a front-end filter to significantly reduce the visible light contamination. We present the results of the X-ray calibrations of the XRT flight filters performed at the X-ray Astronomy Calibration and Testing (XACT) facility of INAF-OAPA. We describe the instrumental set-up, the adopted measurement technique, and present the transmission vs. energy and position measurements.
ATHENA X-IFU thermal filters development status toward the end of the instrument phase-A
Copyright 2018 Society of Photo-Optical Instrumentation Engineers (SPIE). One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited. The X-ray Integral Field Unit (X-IFU) is one of the two instruments of the Athena astrophysics space mission approved by ESA in the Cosmic Vision 2015-2025 Science Programme. The X-IFU consists of a large array of transition edge sensor micro-calorimeters that will operate at 100 mK inside a sophisticated cryostat. A set of thin filters, highly transparent to X-rays, will be m…
Monitoring the stability of thin and medium back-up filters of the Newton-XMM EPIC camera
We are conducting a measurement program on back-up filters of the XMM-Newton EPIC camera aimed at monitoring possible aging effects during the mission lifetime. One thin and one medium EPIC back-up filters have been stored since 1997 in an environment similar to that one of the flight filters (dry nitrogen box before launch, high vacuum after launch). The transmission of the two filters has been measured periodically in the 1900-10000 angstrom wavelength range where effects of aging would be clearly evident. The preliminary results, after 5 years of monitoring, show that a slight aging effect has occurred on both filters which, however, has no significant impact onto the EPIC calibration fo…
Calibration of the XRT-SOLARB flat mirror samples at the XACT Facility of INAF-OAPA
The X-Ray Telescope (XRT) experiment on-board the Japanese satellite SOLAR-B (launch in 2006) is equipped with a modified Wolter I grazing incidence X-ray telescope (focal length 2700 mm) to image the full Sun at ~ 1.5" angular resolution onto a 2048 x 2048 back illuminated CCD focal plane detector. The X-ray telescope consisting of one single reflecting shell is coated with ion beam sputtered Iridium over a binding layer of Chromium to provide nearly 5 square centimetres effective area at 60 A. We present preliminary results of X-ray calibrations of the XRT flat mirror samples performed at the X-ray Astronomy Calibration and Testing (XACT) facility of INAF-OAPA. We describe the instrumenta…
Radio frequency shielding of thin aluminized plastic filters investigated for the ATHENA X-IFU detector
Copyright 2018 Society of Photo-Optical Instrumentation Engineers (SPIE). One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited. The X-ray Integral Field Unit (X-IFU) is one of the two detectors of the ATHENA astrophysics space mission approved by ESA in the Cosmic Vision 2015-2025 Science Programme. The X-IFU consists of a large array of transition edge sensors (TES) micro-calorimeters covering a field of view of 5' diameter, sensitive in the energy range 0.2-12 keV, and providing a spectral resolution…
Calibration of the Solar-B x-ray optics
The Solar-B X-ray telescope (XRT) is a grazing-incidence modified Wolter I X-ray telescope, of 35 cm inner diameter and 2.7 m focal length. XRT, designed for full sun imaging over the wavelength 6-60 Angstroms, will be the highest resolution solar X-Ray telescope ever flown. Images will be recorded by a 2048 X 2048 back-illuminated CCD with 13.5 μm pixels (1 arc-sec/pixel ) with full sun field of view. XRT will have a wide temperature sensitivity in order to observe and discriminate both the high (5-10 MK) and low temperature (1-5 MK) phenomena in the coronal plasma. This paper presents preliminary results of the XRT mirror calibration performed at the X-ray Calibration Facility, NASA-MSFC,…
Electroplated bismuth absorbers for planar NTD-Ge sensor arrays applied to hard x-ray detection in astrophysics
Single sensors or small arrays of manually assembled neutron transmutation doped germanium (NTD-Ge) based microcalorimeters have been widely used as high energy-resolution detectors from infrared to hard X-rays. Several planar technological processes were developed in the last years aimed at the fabrication of NTD-Ge arrays, specifically designed to produce soft X-ray detectors. One of these processes consists in the fabrication of the absorbers. In order to absorb efficiently hard X-ray photons, the absorber has to be properly designed and a suitable material has to be employed. Bismuth offers interesting properties in terms of absorbing capability, of low heat capacity (needed to obtain h…
Status of the EPIC thin and medium filters on-board XMM-Newton after more than 10 years of operation I: laboratory measurements on back-up filters
After more than ten years of operation of the EPIC camera on board the X-ray observatory XMM-Newton, we have reviewed the status of its Thin and Medium filters by performing both laboratory measurements on back-up filters, and analysis of data collected in-flight. We have selected a set of Thin and Medium back-up filters among those still available in the EPIC consortium, and have started a program to investigate their status by different laboratory measurements including: UV/VIS transmission, X-ray transmission, RAMAN IR spectroscopy, X-Ray Photoelectron Spectroscopy, and Atomic Force Microscopy. We report the results of the measurements conducted up to now, and point out some lessons lear…
Calibration of the Lunar Orbital X-ray Fluorescence Imaging Spectrometer (LOXIA) of Chang'E-1 satellite at INAF-OAPA
The Lunar Orbital X-ray Fluorescence Imaging Spectrometer (LOXIA) designed and constructed at the Institute of High Energy Physics of the Chinese Academy of Sciences to perform chemical composition analysis of the Moon surface will operate on-board the Chang'E-1 mission, the first Chinese lunar spacecraft to be launched in 2007. We report the main results of the calibration measurements that we have performed using the X-ray beamline of the XACT facility of INAFOsservatorio Astronomico di Palermo G.S. Vaiana to determine the quantum efficiency of the XRS detector in the soft X-rays as a function of photon energy and angle of incidence.