0000000000084816

AUTHOR

Alfonso Collura

Thermal Filters for the ATHENA X-IFU: Ongoing Activities Toward the Conceptual Design

ATHENA is the L2 mission selected by ESA to pursue the science theme “Hot and Energetic Universe.” One of the two focal plane instruments is the X-ray Integral Field Unit, an array of TES microcalorimeters operated at T $$<$$ 100 mK. To allow the X-ray photons focused by the telescope to reach the detector, windows have to be opened on the cryostat thermal shields. X-ray transparent filters need to be mounted on these open windows to attenuate the IR radiation from warm surfaces, to attenuate RF electromagnetic interferences on TES sensors and SQUID electronics, and to protect the detector from contamination. This paper reviews the ongoing activities driving the design of the X-IFU thermal …

research product

Tests of Lobster Eye Optics for Small Space X-ray Telescope

Abstract The Lobster eye design for a grazing incidence X-ray optics provides wide field of view of the order of many degrees, for this reason it can be a convenient approach for the construction of space all-sky X-ray monitors. We present preliminary results of tests of prototype lobster eye X-ray optics in quasi parallel beam full imaging mode conducted using the 35 m long X-ray beam-line of INAF-OAPA in Palermo (Italy). X-ray images at the focal plane have been taken with a microchannel plate (MCP) detector at several energy values from 0.3 to 8 keV. The gain, the field of view and the angular resolution have been measured and compared with theoretical values.

research product

Fabrication of Electrical Contacts on Pyramid-Shaped NTD-Ge Microcalorimeters Using Free-Standing Shadow Masks

In our effort to fabricate arrays of germanium microcalorimeters for X-ray detection, a truncated square-based pyramid shape has been identified as a suitable geometry for the sensors. It allows to obtain a uniform current spreading across each sensor, and represents a good compromise between having a large support area for the radiation absorber and for maintaining an overall small bolometer volume. This three-dimensional geometry, however, does not allow to create the electrical contacts for the sensors using a regular photoresist-based lift-off metallization process. In this paper we show how to deposit metal contacts on the lateral faces of the pyramidal sensors by metal evaporation thr…

research product

Status of the EPIC thin and medium filters on-board XMM-Newton after more than 10 years of operation II: analysis of in-flight data

After more than ten years of operation of the EPIC camera on board the X-ray observatory XMM-Newton we have reviewed the status of its thin and medium filters by performing both analysis of data collected in-flight and laboratory measurements on on-ground back-up filters. We have investigated the status of the EPIC thin and medium filters by performing an analysis of the optical loading in the PN offset maps to gauge variations in the optical and UV transmission of the filters. We both investigated repeated observations of single optically bright targets and performed a statistical analysis of the extent of loading versus visual magnitude at different epochs. We report the results of these …

research product

Lobster eye optics for nano-satellite x-ray monitor

The Lobster eye design for a grazing incidence X-ray optics provides wide field of view of the order of many degrees, for this reason it would be a convenient approach for the construction of space X-ray monitors. In this paper, we compare previously reported measurements of prototype lobster eye X-ray optics called P-25 with computer simulations and discuss differences between the theoretical end experimentally obtained results. Usability of this prototype lobster eye and manufacturing technology for the nano-satellite mission is assessed. The specific scientific goals are proposed.

research product

Spectral broadening by incomplete thermalization of the energy in X-ray microcalorimeters with superconducting absorber and NTD-Ge thermal sensor

Abstract We present a model of the response of a cryogenic microcalorimeter with superconducting absorber and phonon sensitive thermal sensor to the absorption of X-ray photons. The model is based on the main microscopic processes responsible for the thermalization of the deposited energy. We use a system of rate equations to describe the energy downconversion in the superconductor and transport to the thermal sensor. The model is a tool to investigate the thermalization efficiency with respect to the device characteristics (i.e. absorber material, geometry), in order to optimize the performances of these detectors. As a first case study, we report results of simulations for a microcalorime…

research product

Xrase: The X-Ray Spectroscopic Explorer

The X-Ray Spectroscopic Explorer (XRASE) has a unique combination of features that will make it possible to address many of NASA’s scientific goals. These include how galaxy clusters form, the physics and chemistry of the ISM, the heating of stellar coronae, the amount and content of intergalactic baryonic matter, the mass of black holes and the formation of disks and jets in AGN and galactic binaries. XRASE has a thin foil, multilayered telescope with a large collecting area up to 10 keV, especially in the Fe Kα region (1100 cm2). Its microcalorimeter array combines high energy resolution (7 eV at 6 keV) and efficiency with a field-of-view of 26 arcmin2. A deep orbit allows for long, conti…

research product

ATHENA WFI optical blocking filters development status toward the end of the instrument phase-A

Copyright 2018 Society of Photo-Optical Instrumentation Engineers (SPIE). One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited. The Wide Field Imager (WFI) is one of the two instruments of the ATHENA astrophysics space mission approved by ESA as the second large mission in the Cosmic Vision 2015-2025 Science Programme. The WFI, based on a large array of depleted field effect transistors (DEPFET), will provide imaging in the 0.2-15 keV band over a 40'x40' field of view, simultaneously with spectrally an…

research product

Active shape correction of a thin glass/plastic x-ray mirror

Optics for future X-ray telescopes will be characterized by very large aperture and focal length, and will be made of lightweight materials like glass or plastic in order to keep the total mass within acceptable limits. Optics based on thin slumped glass foils are currently in use in the NuSTAR telescope and are being developed at various institutes like INAF/OAB, aiming at improving the angular resolution to a few arcsec HEW. Another possibility would be the use of thin plastic foils, being developed at SAO and the Palermo University. Even if relevant progresses in the achieved angular resolution were recently made, a viable possibility to further improve the mirror figure would be the app…

research product

X-ray emitting hot plasma in solar active regions observed by the SphinX spectrometer

Aims. The detection of very hot plasma in the quiescent corona is important for diagnosing heating mechanisms. The presence and the amount of such hot plasma is currently debated. The SphinX instrument on-board the CORONAS-PHOTON mission is sensitive to X-ray emission of energies well above 1 keV and provides the opportunity to detect the hot plasma component. Methods. We analysed the X-ray spectra of the solar corona collected by the SphinX spectrometer in May 2009 (when two active regions were present). We modelled the spectrum extracted from the whole Sun over a time window of 17 days in the 1.34− 7k eV energy band by adopting the latest release of the APED database. Results. The SphinX …

research product

The Palermo XACT facility: a new 35 m long soft x-ray beam-line for the development and calibration of next-generation x-ray observatories

The X-ray Astronomy Calibration and Testing (XACT) facility of the Instituto Nazionale di Astrofisica (INAF) at Osservatorio Astronomico di Palermo has recently undergone a major upgrade with the design and construction of a 35 meter long vacuum beam-line operating in the soft X-rays (0.1-20 keV) and the addition of new hardware to meet the requirements for testing and calibration of next generation X-ray missions. We report on the present configuration of the facility and briefly survey the range of its applications.

research product

Electrical-optical characterization of multijunction solar cells under 2000X concentration

In the framework of the FAE "Fotovoltaico ad Alta Efficienza" ("High Efficiency Photovoltaic") Research Project (PO FESR Sicilia 2007/2013 4.1.1.1), we have performed electrical and optical characterizations of commercial InGaP/InGaAs/Ge triple-junction solar cells (1 cm2) mounted on a prototype HCPV module, installed in Palermo (Italy). This system uses a reflective optics based on rectangular off-axis parabolic mirror with aperture 45×45 cm2 leading to a geometrical concentration ratio of 2025. In this study, we report the I-V curve measured under incident power of about 700 W/m2 resulting in an electrical power at maximum point (PMP) of 41.4 W. We also investigated the optical properties…

research product

Planar Array Technology for the Fabrication of Germanium X-Ray Microcalorimeters

Several technologies are presently competing for measuring the temperature increase in cryogenic micro-calorimeters used as high resolution energy-dispersive X-ray detectors. Doped germanium, whose resistivity depends on temperature, is a promising material for this purpose, because of its comparatively low specific heat and the possibility of making wafers with high doping uniformity by neutron transmutation. Presently, Ge-based microcalorimeters are still micro-machined and manually assembled. Here we present a planar approach to the fabrication of 2-D arrays of microcalorimeters and show the preliminary technological results.

research product

Test of x-ray microcalorimeters with bilayer absorbers

Superconducting absorbers for thermal X-ray microcalorimeters should convert into thermalized phonons and transfer to the thermal sensor most of the energy deposited by single photons, on a time scale as short as a few tens of microseconds. Since deposition of X-ray energy in a superconductor produces quasiparticles by breaking up of Cooper pairs, the thermalization efficiency depends on the time scale on which they survive within the absorber volume, trapping part of the absorbed energy. According to the predicted values of their microscopic parameters, in many standard type-I superconducting metals the quasiparticle life time at very low temperatures results too long to allow for recombin…

research product

Light weight, thin plastic foil, X-ray telescopes

We present results from a program to develop an X-ray telescope made from thin plastic shells. Our initial results have been obtained from multi-shell cylindrical lenses that are used in a point-to-point configuration to image the small focal spot of a an X-ray tube on a microchannel plate detector. We describe the steps that led up to the present design and present data from the tests that have been used to identify the properties of the plastic material that make it a suitable X-ray reflector. We discuss two applications of our technology to X-ray missions that are designed to address some of the scientific priorities set forth in NASA's long term plans for high energy astrophysics. One m…

research product

SOFT X-RAY IRRADIATION OF PURE CARBON MONOXIDE INTERSTELLAR ICE ANALOGUES

There is an increasing evidence for the existence of large organic molecules in the interstellar and circumstellar medium. Very few among such species are readily formed in conventional gas-phase chemistry under typical conditions of interstellar clouds. Attention has therefore focused on interstellar ices as a potential source of these relatively complex species. Laboratory experiments show that irradiation of interstellar ice analogues by fast particles or ultraviolet radiation can induce significant chemical complexity. However, stars are sources of intense X-rays at almost every stage of their formation and evolution. Such radiation may thus provide chemical changes in regions where ult…

research product

Thin-shell plastic lenses for space and laboratory applications

We have identified an inexpensive, readily available, mechanically stable, extremely smooth, elastic, and mechanically uniform plastic suitable for thin film X-ray optics. Polyethylene terephthalate (PET) is easily deformed without losing its elastic properties or surface smoothness. Most important, PET can be coated with mono- or multilayers that reflect X-rays at grazing incidence. We have used these properties to produce X-ray optics made either as a concentric nest of cylinders or as a spiral. We have produced accurately formed shells in precisely machined vacuum mandresl or used a pin and wheel structure to form a continuously wound spiral. The wide range of medical, industrial and sci…

research product

Preliminary Mechanical Characterization of Thermal Filters for the X-IFU Instrument on Athena

The X-ray Integral Field Unit (X-IFU) is one of the two instruments of the Athena astrophysics space mission approved by ESA in the Cosmic Vision Science Program. The X-IFU consists of a large array of TES microcalorimeters that will operate at ~ 50 mK inside a sophisticated cryostat. A set of thin filters, highly transparent to X-rays, will be mounted on the cryostat thermal shields in order to attenuate the IR radiative load, to attenuate RF electromagnetic interferences, and to protect the detector from contamination. In this paper, we present the current thermal filters design, describe the filter samples developed/procured so far, and present preliminary results from the ongoing charac…

research product

CALOS: an experiment to study the solar corona with an array of NTD Ge microcalorimeters

In response to the Italian Space Agency announcement "New Ideas for Space Missions", we have proposed an observatory "CALorimetri per Osservazioni Solari" (CALOS) that will perform spatially resolved (Deltatheta similar to 2) X-ray spectroscopy of the solar corona over the 0.1 - 10 keV band using an array of NTD germanium microcalorimeters. The observatory will also include an X-ray polarimeter of radically new design that will study the hard X-ray solar emission and its polarization and will serve as a flare alarm.

research product

In-flight calibration of the ROSAT HRI ultraviolet sensitivity

Comparing measured and estimated count rates of a few selected sample stars, we confirm the validity and provide the in-flight calibration of the ROSAT HRI UV/visible effective area model in Zombeck et al. The count rate estimates for Betelgeuse derived with this model are in agreement with the measured HRI upper limit. This result is also confirmed in an erratum by Berghöfer et al. aimed at revising their previous calculation, which was overestimated by more than 2 orders of magnitude. Adopting this ROSAT HRI UV/visible effective area model and measured UV/visible spectra of a set of sample stars covering the range of Teff 3000-40,000 K, we have built the calibration curves to estimate UV/…

research product

Structural modelling and mechanical tests supporting the design of the ATHENA X-IFU thermal filters and WFI optical blocking filter

Copyright 2018 Society of Photo-Optical Instrumentation Engineers (SPIE). One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited. ATHENA is a Large high energy astrophysics space mission selected by ESA in the Cosmic Vision 2015-2025 Science Program. It will be equipped with two interchangeable focal plane detectors: the X-Ray Integral Field Unit (X-IFU) and the Wide Field Imager (WFI). Both detectors require x-ray transparent filters to fully exploit their sensitivity. In order to maximize the X-ray tra…

research product

Thin plastic shell x-ray optics: an update

We present new results from a program to develop large area X-ray telescopes that are made from thin plastic shells. We use multi-shell cylindrical lenses in a point-to-point configuration to form full aperture images of the small focal spot in a an X-ray tube on a microchannel plate detector. The image data are analyzed to yield radial profiles and encircled energy curves. The derived parameters can be extrapolated to the case of a telescope that is a conical approximation to Wolter 1 optics. The plastic shells can be coated with suitable mono- or multilayers that allow for a wideband coverage of X-ray energies. Our current program is focused on the development of a large area, hard X-ray …

research product

The thin and medium filters of the EPIC camera on-board XMM-Newton: measured performance after more than 15 years of operation

After more than 15 years of operation of the EPIC camera on board the XMM-Newton X-ray observatory, we have reviewed the status of its Thin and Medium filters. We have selected a set of Thin and Medium back-up filters among those still available in the EPIC consortium and have started a program to investigate their status by different laboratory measurements including: UV/VIS transmission, Raman scattering, X-Ray Photoelectron Spectroscopy, and Atomic Force Microscopy. Furthermore, we have investigated the status of the EPIC flight filters by performing an analysis of the optical loading in the PN offset maps to gauge variations in the optical and UV transmission. We both investigated repea…

research product

Realization and drive tests of active thin glass x-ray mirrors

A technique to obtain lightweight and high-resolution focusing mirror segments for large aperture X-ray telescopes is the hot slumping of thin glass foils. In this approach, already successfully experimented to manufacture the optics of the NuSTAR X-ray telescope, thin glasses are formed at high temperature onto a precisely figured mould. The formed glass foils are subsequently stacked onto a stiff backplane with a common axis and focus to form an XOU (X-ray Optical Unit), to be later integrated in the telescope optic structure. In this process, the low thickness of the glass foils guarantees a low specific mass and a very low obstruction of the effective area. However, thin glasses are sub…

research product

A single stage adiabatic demagnetization refrigerator for testing x-ray microcalorimeters

A single stage Adiabatic Demagnetization Refrigerator (ADR), has been set-up at the X-ray Astronomy Calibration and Testing (XACT) facility of INAF - Osservatorio Astronomico di Palermo G.S. Vaiana, for the development and testing of cryogenic X-ray detectors for laboratory and astrophysical applications. The ADR allows to cool detectors at temperatures below 40 mK and to maintain them at constant operating temperature for many hours. We describe the design and construction of the ADR and present test results and performances.

research product

The Space Weather X-Ray spectrometer for the Helianthus sub-L1 mission with solar photonic propulsion

Copyright 2022 Society of Photo‑Optical Instrumentation Engineers (SPIE). One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this publication for a fee or for commercial purposes, and modification of the contents of the publication are prohibited. Helianthus is a phase A study of a space weather station with solar photonic propulsion. The scientific payload will be made of: an X-ray spectrometer to detect solar flares; SailCor, a coronagraph with a wide field of view; a plasma analyzer; a magnetometer. The maximum allowed mass for the entire scientific payload shall not exceed 5 kg. The two imaging devices…

research product

The optical/UV filters for the EPIC experiment

EPIC, the European Photon Imaging Cameras is an experiment based on cooled CCDs on board the ESA X-ray Multi Mirrors satellite due to be launched in 1999. Since CCD's are sensitive to radiation other than X-rays, namely Optical and UV light, filters are necessary to prevent this radiation from reaching the detector sensitive area. Three types of filters were developed, to be used alternatively depending on target source. Here we report on the medium and thin filters developed by MOXTEK Inc. in Orem, Utah, while the thick ones, developed at the Max-Planck-Institut fur Extraterrestrische Physik (MPE, Germany) have been described elsewhere. The two filters, described here, have a 1600 /spl Ari…

research product

Study and implementation of a soft X-ray 100 eV -20 keV fixed exit monochromator system

We describe a “built in house” X-ray monochromator which produces a fixed exit X-ray beam tunable in the full energy range 0.1 - 20 keV. The system is based on a double diffraction on two large size parallel crystals positioned using a remotely controlled micropositioning system in order to keep the position of the monochromatic beam for any chosen energy. Up to six different diffracting elements can be selected without breaking the vacuum. This allows to cover the full energy range of interest. The system is part of an upgrading project of the XACT facility at the Istituto Nazionale di Astrofisica - Osservatorio Astronomico di Palermo G.S. Vaiana, and will be employed for the testing and c…

research product

Accurate Period Determination of an Eclipsing Binary X-Ray Source in M33

We have analyzed the time variability of one of the X-ray sources in M33 observed by both the ROSAT and Einstein Observatory telescopes. The light curve of M33 X-7 exhibits a variability pattern of high and low states, suggesting an eclipsing binary X-ray source. The data suggest a binary period P=1.78572 days (very close to that of Her X-1) and an eclipse duration of ∼0.4 days. The low phase lasts about one-fourth of the period as in Cen X-3

research product

Electroplated Indium Bumps as Thermal and Electrical Connections of NTD-Ge Sensors for the Fabrication of Microcalorimeter Arrays

We are developing a method to build arrays of Ge-based microcalorimeters for soft X-rays detection using micro-photolithographic techniques. A key element of the process is the electrical and thermal connection between the germanium sensors and the interconnection electrical tracks, that lay on a substrate acting as mechanical support and thermal sink. The geometry of the sensors, that have a square base truncated pyramid shape, makes feasible a connection through indium soldering. We describe a technique, based on microlithography and electroplating, adopted to grow indium bumps of a few tens of square microns of area and several microns high on top of the contact pads patterned on the sub…

research product

Soft X-Ray Irradiation of Methanol Ice: Implication for H2CO Formation in Interstellar Regions

We performed 0.3 keV soft X-ray irradiation of a methanol ice at 8 K under ultra-high vacuum conditions. To the best of our knowledge, this is the first time that soft X-rays are used to study photolysis of ice analogs. Despite the low irradiation dose of 10{sup -6} photons molecule{sup -1}, the formation of formaldehyde has been observed. The results of our experiments suggest that X-rays may be a promising candidate to the formation of complex molecules in regions where UV radiation is severely inhibited.

research product

B-MINE, the balloon-borne microcalorimeter nuclear line explorer

B-MINE is a concept for a balloon mission designed to probe the deepest regions of a supernova explosion by detecting Ti-44 emission at 68 keV with spatial and spectral resolutions that are sufficient to determine the extent and velocity distribution of the Ti-44 emitting region. The payload introduces the concept of focusing optics and microcalorimeter spectroscopy to nuclear line emission astrophysics. B-MINE has a thin, plastic foil telescope multilayered to maximize the reflectivity in a 20 keV band centered at 68 keV and a microcalorimeter array optimized for the same energy band. This combination provides a reduced background, an energy resolution of 50 eV and a 3sigma sensitivity in …

research product

ATHENA X-IFU thermal filters development status toward the end of the instrument phase-A

Copyright 2018 Society of Photo-Optical Instrumentation Engineers (SPIE). One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited. The X-ray Integral Field Unit (X-IFU) is one of the two instruments of the Athena astrophysics space mission approved by ESA in the Cosmic Vision 2015-2025 Science Programme. The X-IFU consists of a large array of transition edge sensor micro-calorimeters that will operate at 100 mK inside a sophisticated cryostat. A set of thin filters, highly transparent to X-rays, will be m…

research product

A fully planar approach to the construction of X-Ray microcalorimeters with doped Germanium sensors

We have investigated a fully planar technology for the development of arrays of X-ray microcalorimeters with doped germanium thermal sensor. We describe the proposed approach and show promising results obtained with the deep etching of germanium, the most critical step of the whole process.

research product

The Large Observatory For x-ray Timing

The Large Observatory For x-ray Timing (LOFT) was studied within ESA M3 Cosmic Vision framework and participated in the final down-selection for a launch slot in 2022-2024. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument, LOFT will study the behaviour of matter under extreme conditions, such as the strong gravitational field in the innermost regions of accretion flows close to black holes and neutron stars, and the supra-nuclear densities in the interior of neutron stars. The science payload is based on a Large Area Detector (LAD, 10 m 2 effective area, 2-30 keV, 240 eV spectral resolution, 1 deg collimated field of view) and a WideFi…

research product

Thermal shielding of the SIMBOL-X mirror assembly

The thermal modeling of the SIMBOL-X X-ray telescope has shown that thermal shielding of both the telescope ends is one possibility to ensure temperature uniformity of the mirror and to reduce the required heating power. The design of the thermal shielding must minimize the thermal exchange in a trade off between transparency of the shields to soft X-rays and mechanical robustness. We discuss two possible designs of the thermal shielding of the mirror module and show transmission curves at X-ray wavelengths.

research product

Manufacturing an active X-ray mirror prototype in thin glass

Adjustable mirrors equipped with piezo actuators are commonly used at synchrotron and free-electron laser (FEL) beamlines, in order to optimize their focusing properties and sometimes to shape the intensity distribution of the focal spot with the desired profile. Unlike them, X-ray mirrors for astronomy are much thinner in order to enable nesting and reduce the areal mass, and the application of piezo actuators acting normally to the surface appears much more difficult. There remains the possibility to correct the deformations using thin patches that exert a tangential strain on the rear side of the mirror: some research groups are already at work on this approach. The technique reported he…

research product

The OAPA/DPSFA: solar physics, instrumental expertise, and the XACT facility

The potential contribution to Solar Orbiter hardware, calibration and testing from the Palermo group (Osservatorio Astronomico di Palermo G.S. Vaiana + Sezione di Astronomia del Dipartimento di Scienze Fisiche ed Astronomiche (DpSFA), Università di Palermo) will be mostly based on the XACT facility and the related expertise. The X-ray Astronomy Calibration and Testing (XACT) facility of Osservatorio Astronomico di Palermo "G.S. Vaiana" (OAPA) includes vacuum systems, sources, monochromators, detectors, mechanical manipulators, clean room, etc. that permits us to perform measurements in the spectrum ranging from visible light to soft X-rays (0.001 - 10 keV). The facility is currently used in…

research product

Monitoring the stability of thin and medium back-up filters of the Newton-XMM EPIC camera

We are conducting a measurement program on back-up filters of the XMM-Newton EPIC camera aimed at monitoring possible aging effects during the mission lifetime. One thin and one medium EPIC back-up filters have been stored since 1997 in an environment similar to that one of the flight filters (dry nitrogen box before launch, high vacuum after launch). The transmission of the two filters has been measured periodically in the 1900-10000 angstrom wavelength range where effects of aging would be clearly evident. The preliminary results, after 5 years of monitoring, show that a slight aging effect has occurred on both filters which, however, has no significant impact onto the EPIC calibration fo…

research product

Towards an AMTEC-like device based on non-alkali metal for efficient, safe and reliable direct conversion of thermal to electric power

Alkali Metal ThermoElectric Converters directly convert heat into electric energy and have promising applicability in the field of sustainable and renewable energy. The high theoretical efficiency, close to Carnot's cycle, the lack of moving parts, and the interesting operating temperature range drive the search for new materials able to ensure safe and reliable operation at competitive costs.The present work focuses on the design of a non-alkali metal based cell and on the fabrication of a testing device to validate the design work. The selection of a new operating fluid for the cell improves durability, reliability and safety of the device. Finally, we discuss possible applications to alr…

research product

Temperature effects on the performances of the ATHENA X-IFU thermal filters

The X-Ray Integral Field Unit (X-IFU) detector on-board ATHENA is an array of TES micro-calorimeters that will operate at ~50 mK. In the current investigated design, five thermal filters (TF) will be mounted on the cryostat shields to attenuate IR radiative load and avoid energy resolution degradation due to photon shot noise. Each filter consists of a thin polyimide film (~50 nm thick) coated with aluminum (~30 nm thick). Since the TF operate at different temperatures in the range 0.05-300 K, it is relevant to study how temperature affects their mechanical/optical performances (e.g. near edge absorption fine structures of the atomic elements in the filter material). Such results are crucia…

research product

Calibration of the XRT-SOLARB flat mirror samples at the XACT Facility of INAF-OAPA

The X-Ray Telescope (XRT) experiment on-board the Japanese satellite SOLAR-B (launch in 2006) is equipped with a modified Wolter I grazing incidence X-ray telescope (focal length 2700 mm) to image the full Sun at ~ 1.5" angular resolution onto a 2048 x 2048 back illuminated CCD focal plane detector. The X-ray telescope consisting of one single reflecting shell is coated with ion beam sputtered Iridium over a binding layer of Chromium to provide nearly 5 square centimetres effective area at 60 A. We present preliminary results of X-ray calibrations of the XRT flat mirror samples performed at the X-ray Astronomy Calibration and Testing (XACT) facility of INAF-OAPA. We describe the instrumenta…

research product

The optical blocking filter for the ATHENA wide field imager: Ongoing activities towards the conceptual design

ATHENA is the L2 mission selected by ESA to pursue the science theme "Hot and Energetic Universe" (launch scheduled in 2028). One of the key instruments of ATHENA is the Wide Field Imager (WFI) which will provide imaging in the 0.1-15 keV band over a 40'x40' large field of view, together with spectrally and time-resolved photon counting. The WFI camera, based on arrays of DEPFET active pixel sensors, is also sensitive to UV/Vis photons. Optically generated electron-hole pairs may degrade the spectral resolution as well as change the energy scale by introducing a signal offset. For this reason, the use of an X-ray transparent optical blocking filter is needed to allow the observation of all …

research product

Radio frequency shielding of thin aluminized plastic filters investigated for the ATHENA X-IFU detector

Copyright 2018 Society of Photo-Optical Instrumentation Engineers (SPIE). One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited. The X-ray Integral Field Unit (X-IFU) is one of the two detectors of the ATHENA astrophysics space mission approved by ESA in the Cosmic Vision 2015-2025 Science Programme. The X-IFU consists of a large array of transition edge sensors (TES) micro-calorimeters covering a field of view of 5' diameter, sensitive in the energy range 0.2-12 keV, and providing a spectral resolution…

research product

Electroplated bismuth absorbers for planar NTD-Ge sensor arrays applied to hard x-ray detection in astrophysics

Single sensors or small arrays of manually assembled neutron transmutation doped germanium (NTD-Ge) based microcalorimeters have been widely used as high energy-resolution detectors from infrared to hard X-rays. Several planar technological processes were developed in the last years aimed at the fabrication of NTD-Ge arrays, specifically designed to produce soft X-ray detectors. One of these processes consists in the fabrication of the absorbers. In order to absorb efficiently hard X-ray photons, the absorber has to be properly designed and a suitable material has to be employed. Bismuth offers interesting properties in terms of absorbing capability, of low heat capacity (needed to obtain h…

research product

Calibration of the SphinX experiment at the XACT facility in Palermo

Three of the four detectors of the SphinX experiment to be flown on the Russian mission Coronas-Photon have been measured at the XACT Facility of the Palermo Observatory at several wavelengths in the soft X-ray band. We describe the instrumental set-up and report some measurements. The analysis work to obtain the final calibration is still in progress.

research product

Manufacturing and testing a thin glass mirror shell with piezoelectric active control

Optics for future X-ray telescopes will be characterized by very large aperture and focal length, and will be made of lightweight materials like glass or silicon in order to keep the total mass within acceptable limits. Optical modules based on thin slumped glass foils are being developed at various institutes, aiming at improving the angular resolution to a few arcsec HEW. Thin mirrors are prone to deform, so they require a careful integration to avoid deformations and even correct forming errors. On the other hand, this offers the opportunity to actively correct the residual deformation: a viable possibility to improve the mirror figure is the application of piezoelectric actuators onto t…

research product

XRASE: the X-ray spectroscopic explorer

The X-Ray Spectroscopic Explorer (XRASE) has a unique combination of features that will make it possible to address many of NASA's scientific goals. These include how galaxy clusters form, the physics and chemistry of the ISM, the heating of stellar coronae, the amount and content of intergalactic baryonic matter, the mass of black holes and the formation of disks and jets in AGN and galactic binaries. XRASE has a thin foil, multilayered telescope with a large collecting area up to 10 keV, especially in the Fe Kα region (1100 cm2). Its microcalorimeter array combines high energy resolution (7 eV at 6 keV) and efficiency with a field-of-view of 26 arcmin2. A deep orbit allows for long, conti…

research product

Electrical connections and driving electronics for piezo-actuated x-ray thin glass optics

Use of thin glass modular optics is a technology currently under study to build light, low cost, large area X-ray telescopes for high energy astrophysics space missions. The angular resolution of such telescopes is limited by local deviations from the ideal shape of the mirrors. One possible strategy to improve it consists in actively correcting the mirror profile by gluing thin ceramic piezo-electric actuators on the back of the glasses. A large number of actuators, however, requires several electrical connections to drive them with the different needed voltages. We have developed a process for depositing conductive paths directly on the back of non-planar thin foil mirrors by means of a p…

research product

Baseline design of the thermal blocking filters for the X-IFU detector on board ATHENA

ATHENA is an advanced X-ray observatory designed by a large European consortium to address the science theme "Hot and Energetic Universe" recently selected by ESA for L2 – the second Large-class mission within the Cosmic Vision science program (launch scheduled in 2028). One of the key instruments of the mission is the X-ray Integral Field Unit (X-IFU), an array of Transition Edge Sensor (TES) micro-calorimeters with high energy resolution (2.5 eV @ 6 keV) in the energy range 0.2÷12 keV, operating at the focal plane of a large effective area high angular resolution (5" HEW) grazing incidence X-ray telescope. The X-IFU operates at temperatures below 100 mK and thus requires a sophisticated c…

research product

Status of the EPIC thin and medium filters on-board XMM-Newton after more than 10 years of operation I: laboratory measurements on back-up filters

After more than ten years of operation of the EPIC camera on board the X-ray observatory XMM-Newton, we have reviewed the status of its Thin and Medium filters by performing both laboratory measurements on back-up filters, and analysis of data collected in-flight. We have selected a set of Thin and Medium back-up filters among those still available in the EPIC consortium, and have started a program to investigate their status by different laboratory measurements including: UV/VIS transmission, X-ray transmission, RAMAN IR spectroscopy, X-Ray Photoelectron Spectroscopy, and Atomic Force Microscopy. We report the results of the measurements conducted up to now, and point out some lessons lear…

research product

Combined heat and power generation with a HCPV system at 2000 suns

In the framework of the FAE “Fotovoltaico ad Alta Efficienza” (“High Efficiency Photovoltaic”) Research Project funded by the Sicilian Region under the program PO FESR Sicilia 2007/2013 4.1.1.1, we have developed an innovative solar CHP system for the combined production of heat and power at the high concentration level of 2000 suns [1]. This work shows the experimental results obtained on FAE-HCPV modules and analyses the behaviour of the system. The solar radiation is concentrated on commercial InGaP/InGaAs/Ge triple-junction solar cells designed for intensive work. The primary optics is a rectangular off-axis parabolic mirror (with a size of 46x46 = 2116 cm2 in a projection normal to the…

research product

Modeling the energy thermalization of X-ray photons in a microcalorimeter with superconducting absorber

We present a modeling of the response of a microcalorimeter to the absorption of X-ray photons, based on the main microscopical processes responsible for the energy thermalization. In particular, we have modeled a microcalorimeter with superconducting tin absorber (350 micron x 350 micron x 7 micron) and neutron transmutation doped (NTD) germanium thermistor (75 micron x 50 micron x 150 micron). Such a detector, operated at 60 mK, is expected to achieve a spectral resolution as good as 1 eV FWHM in the soft X-ray energy range, based on the known sources of thermal and electronic noise. Nevertheless, the best spectral resolution measured in laboratory experimental tests is of about 5 eV FWHM…

research product

Calibration of the Lunar Orbital X-ray Fluorescence Imaging Spectrometer (LOXIA) of Chang'E-1 satellite at INAF-OAPA

The Lunar Orbital X-ray Fluorescence Imaging Spectrometer (LOXIA) designed and constructed at the Institute of High Energy Physics of the Chinese Academy of Sciences to perform chemical composition analysis of the Moon surface will operate on-board the Chang'E-1 mission, the first Chinese lunar spacecraft to be launched in 2007. We report the main results of the calibration measurements that we have performed using the X-ray beamline of the XACT facility of INAFOsservatorio Astronomico di Palermo G.S. Vaiana to determine the quantum efficiency of the XRS detector in the soft X-rays as a function of photon energy and angle of incidence.

research product

The young hard active Sun: soft X-ray irradiation of tryptophan in water solutions

AbstractThe X-ray emission of the young Sun was much harder and intense than today and might have played a significant role in the evolution of complex organics in protoplanetary environments. We investigate the effects of soft X-rays on tryptophan molecules in aqueous solutions at room temperature. As results of the irradiation experiments we detect several light species indicative of fragmentation, together with large molecular structures such as tryptophan dipeptide and tripeptide. Complexification is more evident in H2O solution than in D2O, probably due to isotopic effects. The abundances of peptides depend on the irradiation dose and decrease with increasing energy deposition. Radical…

research product