6533b862fe1ef96bd12c7795
RESEARCH PRODUCT
Modeling the energy thermalization of X-ray photons in a microcalorimeter with superconducting absorber
Salvatore SerioEmanuele PerinatiJeffrey W. BeemanEugene E. HallerAlfonso ColluraDon A. LandisMarco BarberaEric H. SilverNorman W. Maddensubject
PhysicsRange (particle radiation)PhotonPhysics::Instrumentation and DetectorsPhononbusiness.industrychemistry.chemical_elementGermaniumThermalizationCondensed Matter PhysicsOpticsThermalisationchemistryMicrocalorimeterX-ray spectroscopyNeutronAtomic physicsSpectral resolutionElectrical and Electronic EngineeringbusinessAbsorption (electromagnetic radiation)description
We present a modeling of the response of a microcalorimeter to the absorption of X-ray photons, based on the main microscopical processes responsible for the energy thermalization. In particular, we have modeled a microcalorimeter with superconducting tin absorber (350 micron x 350 micron x 7 micron) and neutron transmutation doped (NTD) germanium thermistor (75 micron x 50 micron x 150 micron). Such a detector, operated at 60 mK, is expected to achieve a spectral resolution as good as 1 eV FWHM in the soft X-ray energy range, based on the known sources of thermal and electronic noise. Nevertheless, the best spectral resolution measured in laboratory experimental tests is of about 5 eV FWHM (at 5.89 keV). We have investigated how the microscopic processes of energy thermalization, involving both quasiparticles and phonons, and the position of absorption of the photons may affect the spectral resolution of the detector.
year | journal | country | edition | language |
---|---|---|---|---|
2003-03-10 |