0000000000240498

AUTHOR

Eugene E. Haller

showing 9 related works from this author

Xrase: The X-Ray Spectroscopic Explorer

2001

The X-Ray Spectroscopic Explorer (XRASE) has a unique combination of features that will make it possible to address many of NASA’s scientific goals. These include how galaxy clusters form, the physics and chemistry of the ISM, the heating of stellar coronae, the amount and content of intergalactic baryonic matter, the mass of black holes and the formation of disks and jets in AGN and galactic binaries. XRASE has a thin foil, multilayered telescope with a large collecting area up to 10 keV, especially in the Fe Kα region (1100 cm2). Its microcalorimeter array combines high energy resolution (7 eV at 6 keV) and efficiency with a field-of-view of 26 arcmin2. A deep orbit allows for long, conti…

PhysicsPoint spread functionAstrophysics::High Energy Astrophysical PhenomenaX-rayAstronomyAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicslaw.inventionTelescopeBaryonOrbitlawIntergalactic travelTransition edge sensorAstrophysics::Galaxy AstrophysicsGalaxy cluster
researchProduct

X-ray and gamma-ray astronomy with NTD germanium-based microcalorimeters

2002

We report on the performance of our NTD-Ge microcalorimeters. To date, the spectral resolution for x-ray and gamma-ray lines from radioactive sources and laboratory plasmas is 4.8 eV in the entire 1 - 6 keV band and 52 eV at 60 keV. Technical details responsible for this performance are presented as well as an innovative electro-thermal approach for enhancing count-rate capability.

PhysicsX-ray astronomyX-raychemistry.chemical_elementGermaniumPlasmaGamma-ray astronomyAstrophysicsmicrocalorimeterlaw.inventionX-rayAstrophysicGermanium radiation detectorsSettore FIS/05 - Astronomia E AstrofisicachemistrylawNTD Germaniumgamma-raySpectral resolutionLight-emitting diode
researchProduct

Laboratory astrophysics survey of key x-ray diagnostic lines using a microcalorimeter on an electron beam ion trap

2000

Cosmic plasma conditions created in an electron beam ion trap (EBIT) make it possible to simulate the dependencies of key diagnostic X-ray lines on density, temperature, and excitation conditions that exist in astrophysical sources. We used a microcalorimeter for such laboratory astrophysics studies because it has a resolving power ≈1000, quantum efficiency approaching 100%, and a bandwidth that spans the X-ray energies from 0.2 keV to 10 keV. Our microcalorimeter, coupled with an X-ray optic to increase the effective solid angle, provides a significant new capability for laboratory astrophysics measurements. Broadband spectra obtained from the National Institute of Standards and Technology…

Physics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical Phenomenachemistry.chemical_elementFizikai tudományokAstrophysicsSpectral lineNeonTermészettudományokAtomic processeIonizationPhysics::Atomic PhysicsAtomic dataNuclear and High Energy PhysicPhysicsArgonKryptonAstronomy and AstrophysicsLine: IdentificationPlasmaX-rays: GeneralchemistrySpace and Planetary ScienceAstrophysical plasmaMethods: Laboratory plasmaAtomic physicsElectron beam ion trap
researchProduct

A microcalorimeter spectrometer for the investigation of laboratory plasmas

2002

We describe a cryostat and 2-stage ADR specifically designed for making measurements at the NIST EBIT (Electron Beam Ion Trap) facility. The design is compact and consists of a single helium bath with two vapor-cooled shields. The 2-stage ADR has two separate magnets and two heat switches. The interface between the EBIT and microcalorimeter array will also be described.

PhysicsCryostatSpectrometerbusiness.industryLiquid heliumchemistry.chemical_elementShieldslaw.inventionNuclear physicsOpticschemistrylawADR cryostat EBIT x-ray microcalorimeters AstrophysicsNISTPlasma diagnosticsbusinessHeliumElectron beam ion trapAIP Conference Proceedings
researchProduct

B-MINE, the balloon-borne microcalorimeter nuclear line explorer

2001

B-MINE is a concept for a balloon mission designed to probe the deepest regions of a supernova explosion by detecting Ti-44 emission at 68 keV with spatial and spectral resolutions that are sufficient to determine the extent and velocity distribution of the Ti-44 emitting region. The payload introduces the concept of focusing optics and microcalorimeter spectroscopy to nuclear line emission astrophysics. B-MINE has a thin, plastic foil telescope multilayered to maximize the reflectivity in a 20 keV band centered at 68 keV and a microcalorimeter array optimized for the same energy band. This combination provides a reduced background, an energy resolution of 50 eV and a 3sigma sensitivity in …

X-ray AstronomyPhysics::Instrumentation and DetectorsSupernovaAstrophysics::High Energy Astrophysical PhenomenaBallonX-ray opticsSNRlaw.inventionAstrophysicTelescopeOpticsSettore FIS/05 - Astronomia E AstrofisicaNTD GermaniumlawMicrocalorimeterBinary starEmission spectrumX-ray OpticSpectral resolutionElectrical and Electronic EngineeringSpectroscopyLine (formation)PhysicsX-ray astronomybusiness.industryCondensed Matter PhysicsSupernovaStarsgamma rayMeasuring instrumentbusinessBalloon
researchProduct

High Energy, High Resolution X-Ray Spectroscopy: Microcalorimeters For Nuclear Line Astrophysics

2005

We introduce focusing optics and microcalorimeter spectroscopy to nuclear line emission astrophysics with a balloon payload concept called, B‐MINE. It is designed to probe the deepest regions of a supernova explosion by detecting 44Ti emission at 68 keV with spatial and spectral resolutions that are sufficient to determine the velocity distribution of the 44Ti emitting region. B‐MINE has a thin plastic foil telescope multilayered to maximize the reflectivity in a 20 keV band centered at 68 keV and a microcalorimeter array optimized for the same energy band. This combination provides a reduced background, an energy resolution of 50 eV and a 3σ sensitivity in 106 s of 6 × 10−8 ph cm−2 s−1 at …

PhysicsX-ray spectroscopySpectrometerPhysics::Instrumentation and Detectorsbusiness.industryAstrophysics::High Energy Astrophysical PhenomenaResolution (electron density)Astrophysicslaw.inventionTelescopeSupernovaOpticslawEmission spectrumSpectroscopybusinessX- and gamma-ray telescopes and instrumentation Photometric polarimetric and spectroscopic instrumentationLine (formation)
researchProduct

Emission-Line Intensity Ratios in F[CLC]e[/CLC] [CSC]xvii[/CSC] Observed with a Microcalorimeter on an Electron Beam Ion Trap

2000

We report new observations of emission line intensity ratios of Fe XVII under controlled experimental conditions, using the National Institute of Standards and Technology electron beam ion trap (EBIT) with a microcalorimeter detector. We compare our observations with collisional-radiative models using atomic data computed in distorted wave and R-matrix approximations, which follow the transfer of the polarization of level populations through radiative cascades. Our results for the intensity ratio of the 2p6 1S0-2p53d 1P1 15.014 A line to the 2p6 1S0-2p53d 3D1 15.265 A line are 2.94 ± 0.18 and 2.50 ± 0.13 at beam energies of 900 and 1250 eV, respectively. These results are not consistent wit…

PhysicsMethods: laboratorySun: coronaDetectorTechniques: spectroscopicAstronomy and Astrophysicslaboratory; Stars: individual (Capella); Sun: corona; Techniques: spectroscopic; X-rays: general [Atomic data; Methods]PlasmaX-rays: generalIntensity ratioPolarization (waves)IonSettore FIS/05 - Astronomia E AstrofisicaStars: individual (Capella)Space and Planetary ScienceRadiative transferEmission spectrumAtomic physicsAtomic dataElectron beam ion trapThe Astrophysical Journal
researchProduct

NTD-GE-based microcalorimeter performance

2000

Our group has been developing x-ray microcalorimeters consisting of neutron transmutation doped (NTD) germanium thermistors attached to superconducting tin absorbers. We discuss the performance of single pixel x-ray detectors, and describe an array technology. In this paper we describe the read-out circuit that allows us to measure fast signals in our detectors as this will be important in understanding the primary cause of resolution broadening. We describe briefly a multiplexing scheme that allows a number of different calorimeters to be read out using a single JFET. We list the possible causes of broadening and give a description of the experiment which best demonstrates the cause of the…

PhysicsNuclear and High Energy PhysicsNuclear transmutationPhysics::Instrumentation and Detectorsbusiness.industryDetectorX-ray detectorchemistry.chemical_elementJFETGermaniumMultiplexingElectromagnetic interferenceSettore FIS/05 - Astronomia E AstrofisicaOpticschemistryOptoelectronicsNeutronbusinessInstrumentationNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Modeling the energy thermalization of X-ray photons in a microcalorimeter with superconducting absorber

2003

We present a modeling of the response of a microcalorimeter to the absorption of X-ray photons, based on the main microscopical processes responsible for the energy thermalization. In particular, we have modeled a microcalorimeter with superconducting tin absorber (350 micron x 350 micron x 7 micron) and neutron transmutation doped (NTD) germanium thermistor (75 micron x 50 micron x 150 micron). Such a detector, operated at 60 mK, is expected to achieve a spectral resolution as good as 1 eV FWHM in the soft X-ray energy range, based on the known sources of thermal and electronic noise. Nevertheless, the best spectral resolution measured in laboratory experimental tests is of about 5 eV FWHM…

PhysicsRange (particle radiation)PhotonPhysics::Instrumentation and DetectorsPhononbusiness.industrychemistry.chemical_elementGermaniumThermalizationCondensed Matter PhysicsOpticsThermalisationchemistryMicrocalorimeterX-ray spectroscopyNeutronAtomic physicsSpectral resolutionElectrical and Electronic EngineeringbusinessAbsorption (electromagnetic radiation)
researchProduct