6533b7d9fe1ef96bd126c3c8

RESEARCH PRODUCT

X-ray emitting hot plasma in solar active regions observed by the SphinX spectrometer

Magdalena GryciukPiotr PodgorskiSzymon GburekFabio RealeFabio RealeS. TerzoAlfonso ColluraMiroslaw KowalinskiMarco BarberaMarco BarberaJanusz SylwesterMarco MiceliMarco Miceli

subject

Physics010504 meteorology & atmospheric sciencesSpectrometerX-rayBremsstrahlungAstronomy and AstrophysicsPlasmaAstrophysics01 natural sciencesCoronaSpectral lineSun: corona methods: observational techniques: spectroscopicStars13. Climate actionSpace and Planetary Science0103 physical sciencesCalibration010303 astronomy & astrophysics0105 earth and related environmental sciences

description

Aims. The detection of very hot plasma in the quiescent corona is important for diagnosing heating mechanisms. The presence and the amount of such hot plasma is currently debated. The SphinX instrument on-board the CORONAS-PHOTON mission is sensitive to X-ray emission of energies well above 1 keV and provides the opportunity to detect the hot plasma component. Methods. We analysed the X-ray spectra of the solar corona collected by the SphinX spectrometer in May 2009 (when two active regions were present). We modelled the spectrum extracted from the whole Sun over a time window of 17 days in the 1.34− 7k eV energy band by adopting the latest release of the APED database. Results. The SphinX broadband spectrum cannot be modelled by a single isothermal component of optically thin plasma and two components are necessary. In particular, the high statistical significance of the count rates and the accurate calibration of the spectrometer allowed us to detect a very hot component at ∼7 million K with an emission measure of ∼2.7 × 10 44 cm −3 . The X-ray emission from the hot plasma dominates the solar X-ray spectrum above 4 keV. We checked that this hot component is invariably present in both the high and low emission regimes, i.e. even excluding resolvable microflares. We also present and discuss the possibility of a non-thermal origin (which would be compatible with a weak contribution from thick-target bremsstrahlung) for this hard emission component. Conclusions. Our results support the nanoflare scenario and might confirm that a minor flaring activity is ever-present in the quiescent corona, as also inferred for the coronae of other stars.

https://doi.org/10.1051/0004-6361/201219670