0000000000084817
AUTHOR
Teresa Mineo
Thermal Filters for the ATHENA X-IFU: Ongoing Activities Toward the Conceptual Design
ATHENA is the L2 mission selected by ESA to pursue the science theme “Hot and Energetic Universe.” One of the two focal plane instruments is the X-ray Integral Field Unit, an array of TES microcalorimeters operated at T $$<$$ 100 mK. To allow the X-ray photons focused by the telescope to reach the detector, windows have to be opened on the cryostat thermal shields. X-ray transparent filters need to be mounted on these open windows to attenuate the IR radiation from warm surfaces, to attenuate RF electromagnetic interferences on TES sensors and SQUID electronics, and to protect the detector from contamination. This paper reviews the ongoing activities driving the design of the X-IFU thermal …
ATHENA WFI optical blocking filters development status toward the end of the instrument phase-A
Copyright 2018 Society of Photo-Optical Instrumentation Engineers (SPIE). One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited. The Wide Field Imager (WFI) is one of the two instruments of the ATHENA astrophysics space mission approved by ESA as the second large mission in the Cosmic Vision 2015-2025 Science Programme. The WFI, based on a large array of depleted field effect transistors (DEPFET), will provide imaging in the 0.2-15 keV band over a 40'x40' field of view, simultaneously with spectrally an…
The mirror module design for the cryogenic x-ray imaging spectrometer on-board ORIGIN
ORIGIN is a medium size high-energy mission concept submitted to ESA in response to the Cosmic Vision call issued on July 2010. The mission will investigate the evolution of the Universe by performing soft X-ray high resolution spectroscopic measurements of metals formed in different astrophysical environments, from the first population III stars at z > 7 to the present large scale structures. The main instrument on-board ORIGIN will be a large format array of TES X-ray micro-calorimeters covering a FOV of 30' at the focal plane of a grazing incidence optical module with a focal length of 2.5 m and an angular resolution of 30'' HEW at 1 keV. We present the optical module design which is bas…
Spiral conical approximations to double reflection Wolter optics
The design of a grazing incidence focusing optic obtained from a spiral approximation to multiple nested cones produces an annular image of a point source. The angular size of the annulus depends mainly on the pitch of the winding and the focal length. For a spiral conical approximation to Wolter optics, the effect is magnified by the double reflection. However, if the two conical spirals are wound one clock-wise and the other counter-clock-wise, then the aberration is partially compensated. We use a ray tracing code to evaluate advantages and disadvantages of this optical design for potential applications of a light weight optics technology based on plastic foils that we are currently inve…
Swift observations of GRB 060614: an anomalous burst with a well behaved afterglow
GRB 060614 is a remarkable GRB observed by Swift with puzzling properties, which challenge current progenitor models. The lack of any bright SN down to very strict limits and the vanishing spectral lags are typical of short GRBs, strikingly at odds with the long (102s) duration of this event. Here we present spectral and temporal analysis of the Swift observations. We show that the burst presents standard optical, UV and X-ray afterglows. An achromatic break is observed simultaneously in optical and X-rays, at a time consistent with the break in the R-band light curve measured by the VLT. The achromatic behaviour and the consistent post-break decay slopes make GRB 060614 one of the best exa…
GRB 070311: a direct link between the prompt emission and the afterglow
We present prompt gamma-ray, early NIR/optical, late optical and X-ray observations of the peculiar GRB 070311 discovered by INTEGRAL, in order to gain clues on the mechanisms responsible for the prompt gamma-ray pulse as well as for the early and late multi-band afterglow of GRB 070311. We fitted with empirical functions the gamma-ray and optical light curves and scaled the result to the late time X-rays. The H-band light curve taken by REM shows two pulses peaking 80 and 140 s after the peak of the gamma-ray burst and possibly accompanied by a faint gamma-ray tail. Remarkably, the late optical and X-ray afterglow underwent a major rebrightening between 3x10^4 and 2x10^5 s after the burst …
Exploring Broadband GRB Behavior During gamma-ray Emission
The robotic ROTSE-III telescope network detected prompt optical emission contemporaneous with the gamma-ray emission of Swift events GRB051109A and GRB051111. Both datasets have continuous coverage at high signal-to-noise levels from the prompt phase onwards, thus the early observations are readily compared to the Swift XRT and BAT high energy detections. In both cases, the optical afterglow is established, declining steadily during the prompt emission. For GRB051111, there is evidence of an excess optical component during the prompt emission. The component is consistent with the flux spectrally extrapolated from the gamma-rays, using the gamma-ray spectral index. A compilation of spectral …
Design and optimization of the wide-field spectrometer for EDGE mission
Designing an x-ray baffle for stray-light reduction at the focal plane of the Wide Field Imager on board EDGE
We exploited a ray-tracing Montecarlo code to investigate the effects of stray-light on the performances of the Wide Field Imager (FoV = 1.5 deg) on board the EDGE satellite. We found non negligible stray-light contamination up to ~ 8 deg off-axis angles. We discuss the benefits of a baffle in order to reduce this contamination, that would strongly affect the telescope sensitivity, and present two possible baffle designs based on results of simulations.
GRB 050410 and GRB 050412: are they really dark gamma-ray bursts?
We present a detailed analysis of the prompt and afterglow emission of GRB 050410 and GRB 050412 detected by Swift for which no optical counterpart was observed. The 15-150 keV energy distribution of the GRB 050410 prompt emission shows a peak energy at 53 keV. The XRT light curve of this GRB decays as a power law with a slope of alpha=1.06+/-0.04. The spectrum is well reproduced by an absorbed power law with a spectral index Gamma_x=2.4+/-0.4 and a low energy absorption N_H=4(+3;-2)x10^21 cm^(-2) which is higher than the Galactic value. The 15-150 keV prompt emission in GRB 050412 is modelled with a hard (Gamma=0.7+/-0.2) power law. The XRT light curve follows a broken power law with the f…
The Large Area Detector of LOFT: the Large Observatory for X-ray Timing
LOFT (Large Observatory for X-ray Timing) is one of the five candidates that were considered by ESA as an M3 mission (with launch in 2022-2024) and has been studied during an extensive assessment phase. It is specifically designed to perform fast X-ray timing and probe the status of the matter near black holes and neutron stars. Its pointed instrument is the Large Area Detector (LAD), a 10 m 2 -class instrument operating in the 2-30keV range, which holds the capability to revolutionise studies of variability from X-ray sources on the millisecond time scales. The LAD instrument has now completed the assessment phase but was not down-selected for launch. However, during the assessment, most o…
The Cryogenic AntiCoincidence Detector Project for ATHENA+: An Overview Up to the Present Status
ATHENA+ is a space mission proposal for the next ESA L2-L3 slot. One of the focal plane instruments is the X-ray integral field unit (X-IFU) working in the energy range 0.3–10 keV. It is a multi-array based on TES detectors aimed at characterizing faint or diffuse sources (e.g. WHIM or galaxy outskirt). The X-IFU will be able to achieve the required sensitivity if a low background is guaranteed. The studies performed by GEANT4 simulations depict a scenario where the use of an active anticoincidence (AC) is mandatory to reduce the background expected in L2 orbit down to the goal level of 0.005 cts cm $$^{-2}$$ s $$^{-1}$$ keV $$^{-1}$$ . This is possible using a cryogenic anticoincidence (…
The x-ray microcalorimeter spectrometer onboard Athena
Trabajo presentado a la conferencia: "Space Telescopes and Instrumentation: Ultraviolet to Gamma Ray" celebrada en Amsterdam (Holanda) el 1 de julio de 2012.-- et al.
The INTEGRAL view of the pulsating hard X-ray sky: from accreting and transitional millisecond pulsars to rotation-powered pulsars and magnetars
arXiv:2012.01346v1
The TES-based cryogenic anticoincidence detector for IXO: First results from large area prototypes
The technique which combines high resolution spectroscopy with imaging capability is a powerful tool to extract fundamental information in X-ray Astrophysics and Cosmology. TES (Transition Edge Sensors)-based microcalorimeters match at best the requirements for doing fine spectroscopy and imaging of both bright (high count rate) and faint (poor signal-to-noise ratio) sources. For this reason they are considered among the most promising detectors for the next high energy space missions and are being developed for use on the focal plane of the IXO (International X-ray Observatory) mission. In order to achieve the required signal-to-noise ratio for faint or diffuse sources it is necessary to r…
The exceptionally extended flaring activity in the X-ray afterglow of GRB 050730 observed with Swift and XMM-Newton
We present the results of a detailed spectral and temporal analysis of Swift and XMM-Newton observations of the high redshift (z=3.969) GRB 050730. The X-ray afterglow of GRB 050730 was found to decline with time with superimposed intense flaring activity that extended over more than two orders of magnitude in time. Seven distinct re-brightening events starting from 236 s up to 41.2 ks after the burst were observed. The underlying decay of the afterglow was well described by a double broken power-law model with breaks at t_1= 237 +/- 20 s and t_2 = 10.1 (-2.2) (+4.6) ks. The temporal decay slopes before, between and after these breaks were alpha_1 = 2.1 +/- 0.3, alpha_2 = 0.44 (-0.08) (+0.1…
X-ray spectroscopic study of the ADC source X1822-371
We analyse two Chandra HETGS (High Energy Transmission Grating Spectrometer) observations and one XMM-Newton observation. The HETGS and XMM/Epic-pn observed X 1822-371 for 140 and 50 ks, respectively. We extracted an averaged spectrum and five spectra from five selected orbital-phase intervals that are 0.04-0.25, 0.25-0.50, 0.50-0.75, 0.95-1.04; the orbital phase zero corresponds to the eclipse time. The spectra cover the energy band between 0.4 and 12 keV. We confirm the presence of local neutral matter that partially covers the X-ray emitting region; the equivalent hydrogen column is 3.5 × 1022 cm-2 and the covered fraction is around 60 %. We detected and identified several emission lines…
Swift Observations of GRB 070110: An Extraordinary X-Ray Afterglow Powered by the Central Engine
We present a detailed analysis of Swift multi-wavelength observations of GRB 070110 and its remarkable afterglow. The early X-ray light curve, interpreted as the tail of the prompt emission, displays a spectral evolution already seen in other gamma-ray bursts. The optical afterglow shows a shallow decay up to ~2 d after the burst, which is not consistent with standard afterglow models. The most intriguing feature is a very steep decay in the X-ray flux at ~20 ks after the burst, ending an apparent plateau. The abrupt drop of the X-ray light curve rules out an external shock as the origin of the plateau in this burst and implies long-lasting activity of the central engine. The temporal and s…
The Large Observatory For x-ray Timing
The Large Observatory For x-ray Timing (LOFT) was studied within ESA M3 Cosmic Vision framework and participated in the final down-selection for a launch slot in 2022-2024. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument, LOFT will study the behaviour of matter under extreme conditions, such as the strong gravitational field in the innermost regions of accretion flows close to black holes and neutron stars, and the supra-nuclear densities in the interior of neutron stars. The science payload is based on a Large Area Detector (LAD, 10 m 2 effective area, 2-30 keV, 240 eV spectral resolution, 1 deg collimated field of view) and a WideFi…
The optical blocking filter for the ATHENA wide field imager: Ongoing activities towards the conceptual design
ATHENA is the L2 mission selected by ESA to pursue the science theme "Hot and Energetic Universe" (launch scheduled in 2028). One of the key instruments of ATHENA is the Wide Field Imager (WFI) which will provide imaging in the 0.1-15 keV band over a 40'x40' large field of view, together with spectrally and time-resolved photon counting. The WFI camera, based on arrays of DEPFET active pixel sensors, is also sensitive to UV/Vis photons. Optically generated electron-hole pairs may degrade the spectral resolution as well as change the energy scale by introducing a signal offset. For this reason, the use of an X-ray transparent optical blocking filter is needed to allow the observation of all …
The Cryogenic AntiCoincidence detector for ATHENA: the progress towards the final pixel design
“The Hot and Energetic Universe” is the scientific theme approved by the ESA SPC for a Large mission to be flown in the next ESA slot (2028th) timeframe. ATHENA is a space mission proposal tailored on this scientific theme. It will be the first X-ray mission able to perform the so-called “Integral field spectroscopy”, by coupling a high-resolution spectrometer, the X-ray Integral Field Unit (X-IFU), to a high performance optics so providing detailed images of its field of view (5’ in diameter) with an angular resolution of 5” and fine energy-spectra (2.5eV@E<7keV). The X-IFU is a kilo-pixel array based on TES (Transition Edge Sensor) microcalorimeters providing high resolution spectroscopy …
Looking through the photoionisation wake: Vela X−1 at φorb ≈ 0.75 with Chandra/HETG
Context. The supergiant X-ray binary Vela X−1 represents one of the best astrophysical sources to investigate the wind environment of an O/B star irradiated by an accreting neutron star. Previous studies and hydrodynamic simulations of the system have revealed a clumpy environment and the presence of two wakes: an accretion wake surrounding the compact object and a photoionisation wake trailing it along the orbit. Aims. Our goal is to conduct, for the first time, high-resolution spectroscopy on Chandra/HETGS data at the orbital phase φorb ≈ 0.75, when the line of sight is crossing the photoionisation wake. We aim to conduct plasma diagnostics, inferring the structure and the geometry of the…
Search for multiwavelength emission from the binary millisecond pulsar PSR J1836-2354A in the globular cluster M22
We present a multi-band search for X-ray, optical and $\gamma$-ray emission of the radio binary millisecond pulsar J1836-2354A, hosted in the globular cluster M22. X-ray emission is significantly detected in two Chandra observations, performed in 2005 and 2014, at a luminosity of $\sim$2-3$\times$10$^{30}$ erg s$^{-1}$, in the 0.5-8 keV energy range. The radio and the X-ray source positions are found consistent within 1$\sigma$ error box. No detection is found in archival XMM-Newton and Swift/XRT observations, compatible with the Chandra flux level. The low statistics prevents us to assess if the X-ray source varied between the two observations. The X-ray spectrum is consistent with a power…
The FIGARO II experiment: a general outline of the mission and the principal scientific results
The FIGARO II (French Italian Gamma-Ray Observatory) experiment has been launched successfully three times: in July 1986 from Milo (Trapani), in November 1988 from Charleville (Australia) and in July 1990 again from Milo. In the first flight the observational program was limited to the Crab pulsar PSR0531+21 only because of a telemetry failure: the high sensitivity of FIGARO II allowed an accurate study of the pulse shape as well as a phase-resolved spectroscopy. It was also possible to evaluate the dispersion measure of the Crab pulsar at the flight date from the time delay between gamma-ray and radio pulses. The major results of the second flight were a stringent upper limit to the low-en…
Thin plastic foil X-ray optics with spiral geometry
Winding a plastic foil ribbon into spiral cylinder or spiral cones we can design and build single or multiple reflection X-ray grazing incidence focusing optics with potential applications in Astronomy as well as experimental physics. The use of thin plastic foils from common industrial applications and of a mounting technique which does not require the construction of mandrels make these optics very cost effective. A spiral geometry focusing optic produces an annular image of a point source with the angular size of the annulus depending mainly on the pitch of the winding and the focal length. We use a ray-tracing code to evaluate the performances of cylindrical, and double conical spiral g…
Magnetic shielding of soft protons in future X-ray telescopes: the case of the ATHENA Wide Field Imager
Both the interplanetary space and the Earth magnetosphere are populated by low energy ($\leq300$ keV) protons that are potentially able to scatter on the reflecting surface of Wolter-I optics of X-ray focusing telescopes and reach the focal plane. This phenomenon, depending on the X-ray instrumentation, can dramatically increase the background level, reducing the sensitivity or, in the most extreme cases, compromising the observation itself. The use of a magnetic diverter, deflecting protons away from the field of view, requires a detailed characterization of their angular and energy distribution when exiting the mirror. We present the first end-to-end Geant4 simulation of proton scattering…
The Cryogenic Anticoincidence Detector for ATHENA-XMS
The TES cryogenic detectors, due to their high spectral resolution and imaging capability in the soft X-ray domain, are the reference devices for the next proposed space missions whose aims are to characterize the spectra of faint or diffuse sources. ATHENA is the re-scoped IXO mission, and one of its focal plane instrument is the X-ray Microcalorimeter Spectrometer (XMS) working in the energy range 0.3-10 keV. XMS will be able to achieve the proposed scientific goals if a background lower than 0.02 cts/cm2/s/keV is guaranteed. The studies performed by GEANT4 simulations depict a scenario where it is mandatory to use an active Anti-Coincidence (AC) to reduce the expected background in the L…
The Athena X-ray Integral Field Unit: a consolidated design for the system requirement review of the preliminary definition phase
The Athena X-ray Integral Unit (X-IFU) is the high resolution X-ray spectrometer, studied since 2015 for flying in the mid-30s on the Athena space X-ray Observatory, a versatile observatory designed to address the Hot and Energetic Universe science theme, selected in November 2013 by the Survey Science Committee. Based on a large format array of Transition Edge Sensors (TES), it aims to provide spatially resolved X-ray spectroscopy, with a spectral resolution of 2.5 eV (up to 7 keV) over an hexagonal field of view of 5 arc minutes (equivalent diameter). The X-IFU entered its System Requirement Review (SRR) in June 2022, at about the same time when ESA called for an overall X-IFU redesign (i…
X-ray spectroscopy of the ADC source X1822-371 with Chandra and XMM-Newton
The eclipsing low-mass X-ray binary X1822-371 is the prototype of the accretion disc corona (ADC) sources. We analyse two Chandra observations and one XMM-Newton observation to study the discrete features and their variation as a function of the orbital phase, deriving constraints on the temperature, density, and location of the plasma responsible for emission lines. The HETGS and XMM/Epic-pn observed X1822-371 for 140 and 50 ks, respectively. We extracted an averaged spectrum and five spectra from five selected orbital-phase intervals that are 0.04-0.25, 0.25-0.50, 0.50-0.75, 0.75-0.95, and, finally, 0.95-1.04; the orbital phase zero corresponds to the eclipse time. All spectra cover the e…
The complex behaviour of the microquasar GRS 1915+105 in theρclass observed withBeppoSAX
BeppoSAX observed GRS 1915+105 on October 2000 with a long pointing lasting about ten days. During this observation, the source was mainly in the rho class characterized by bursts with a recurrence time of between 40 and 100 s. We identify five segments in the burst structure and accumulate the average spectra of these segments during each satellite orbit. We present a detailed spectral analysis aimed at determining variations that occur during the burst and understanding the physical process that produces them. We compare MECS, HPGSPC, and PDS spectra with several models. Under the assumption that a single model is able to fit all spectra, we find that the combination of a multi-temperatur…
The cryogenic anticoincidence detector for ATHENA-XMS: preliminary results from the new prototype
ATHENA has been the re-scoped IXO mission, and one of the foreseen focal plane instrument was the X-ray Microcalorimeter Spectrometer (XMS) working in the energy range 0.3-10 keV, which was a kilo-pixel array based on TES (Transition Edge Sensor) detectors. The need of an anticoincidence (AC) detector is legitimated by the results performed with GEANT4 simulations about the impact of the non x-ray background onto XMS at L2 orbit (REQ. < 0.02 cts/cm2/s/keV). Our consortium has both developed and tested several samples, with increasing area, in order to match the large area of the XMS (64 mm2). Here we show the preliminary results from the last prototype. The results achieved in this work off…
The long outburst of the black hole transient GRS 1716-249 observed in the X-ray and radio band
We present the spectral and timing analysis of X-ray observations performed on the Galactic black hole transient GRS 1716-249 during the 2016-2017 outburst. The source was almost continuously observed with the Neil Gehrels Swift Observatory from December 2016 until October 2017. The X-ray hardness ratio and timing evolution indicate that the source approached the soft state three times during the outburst, even though it never reached the canonical soft spectral state. Thus, GRS 1716-249 increases the number of black hole transients showing outbursts with "failed" state transition. During the softening events, XRT and BAT broadband spectral modeling, performed with thermal Comptonization pl…
FIGARO IV: Large-area balloon-borne telescope to study rapid time variabilities in the gamma-ray sources at energies above 50 MeV
We present a new γ-ray telescope based on the Limited Streamer Tube technology, used as tracking chambers to detect photons above 100 MeV. This technique allows to obtain very large sensitive areas (16 m2 in our experiment), together with a good angular resolution for payloads embarcable in high-altitude balloon flights. The capability to collect a large signal in a short exposure time makes the telescope particularly suitable and competitive with respect to satellite-based detectors for studying both periodic and random time variabilities on galactic and extragalactic γ-ray sources.