0000000000247926
AUTHOR
Marcin Bobieński
Pseudo-abelian integrals: Unfolding generic exponential case
The search for bounds on the number of zeroes of Abelian integrals is motivated, for instance, by a weak version of Hilbert's 16th problem (second part). In that case one considers planar polynomial Hamiltonian perturbations of a suitable polynomial Hamiltonian system, having a closed separatrix bounding an area filled by closed orbits and an equilibrium. Abelian integrals arise as the first derivative of the displacement function with respect to the energy level. The existence of a bound on the number of zeroes of these integrals has been obtained by A. N. Varchenko [Funktsional. Anal. i Prilozhen. 18 (1984), no. 2, 14–25 ; and A. G. Khovanskii [Funktsional. Anal. i Prilozhen. 18 (1984), n…
Pseudo-Abelian integrals along Darboux cycles
We study polynomial perturbations of integrable, non-Hamiltonian system with first integral of Darboux-type with positive exponents. We assume that the unperturbed system admits a period annulus. The linear part of the Poincare return map is given by pseudo-Abelian integrals. In this paper we investigate analytic properties of these integrals. We prove that iterated variations of these integrals vanish identically. Using this relation we prove that the number of zeros of these integrals is locally uniformly bounded under generic hypothesis. This is a generic analog of the Varchenko-Khovanskii theorem for pseudo-Abelian integrals. Finally, under some arithmetic properties of exponents, the p…