Pseudo-abelian integrals: Unfolding generic exponential case
The search for bounds on the number of zeroes of Abelian integrals is motivated, for instance, by a weak version of Hilbert's 16th problem (second part). In that case one considers planar polynomial Hamiltonian perturbations of a suitable polynomial Hamiltonian system, having a closed separatrix bounding an area filled by closed orbits and an equilibrium. Abelian integrals arise as the first derivative of the displacement function with respect to the energy level. The existence of a bound on the number of zeroes of these integrals has been obtained by A. N. Varchenko [Funktsional. Anal. i Prilozhen. 18 (1984), no. 2, 14–25 ; and A. G. Khovanskii [Funktsional. Anal. i Prilozhen. 18 (1984), n…
Infinite orbit depth and length of Melnikov functions
Abstract In this paper we study polynomial Hamiltonian systems d F = 0 in the plane and their small perturbations: d F + ϵ ω = 0 . The first nonzero Melnikov function M μ = M μ ( F , γ , ω ) of the Poincare map along a loop γ of d F = 0 is given by an iterated integral [3] . In [7] , we bounded the length of the iterated integral M μ by a geometric number k = k ( F , γ ) which we call orbit depth. We conjectured that the bound is optimal. Here, we give a simple example of a Hamiltonian system F and its orbit γ having infinite orbit depth. If our conjecture is true, for this example there should exist deformations d F + ϵ ω with arbitrary high length first nonzero Melnikov function M μ along…
Nilpotence of orbits under monodromy and the length of Melnikov functions
Abstract Let F ∈ ℂ [ x , y ] be a polynomial, γ ( z ) ∈ π 1 ( F − 1 ( z ) ) a non-trivial cycle in a generic fiber of F and let ω be a polynomial 1-form, thus defining a polynomial deformation d F + e ω = 0 of the integrable foliation given by F . We study different invariants: the orbit depth k , the nilpotence class n , the derivative length d associated with the couple ( F , γ ) . These invariants bind the length l of the first nonzero Melnikov function of the deformation d F + e ω along γ . We analyze the variation of the aforementioned invariants in a simple but informative example, in which the polynomial F is defined by a product of four lines. We study as well the relation of this b…
Tangential Hilbert problem for perturbations of hyperelliptic Hamiltonian systems
The tangential Hilbert 16th problem is to place an upper bound for the number of isolated ovals of algebraic level curves { H ( x , y ) = const } \{H(x,y)=\operatorname {const}\} over which the integral of a polynomial 1-form P ( x , y ) d x + Q ( x , y ) d y P(x,y)\,dx+Q(x,y)\,dy (the Abelian integral) may vanish, the answer to be given in terms of the degrees n = deg H n=\deg H and d = max ( deg P , deg Q ) d=\max (\deg P,\deg Q) . We describe an algorithm producing this upper bound in the form of a primitive recursive (in fact, elementary) function of n n and d d for the particular case of hyperelliptic polynomials H ( x , y ) = y 2 + U ( x ) H(x,y)=y^2+U(x) under the additional as…
Redundant Picard–Fuchs System for Abelian Integrals
We derive an explicit system of Picard-Fuchs differential equations satisfied by Abelian integrals of monomial forms and majorize its coefficients. A peculiar feature of this construction is that the system admitting such explicit majorants, appears only in dimension approximately two times greater than the standard Picard-Fuchs system. The result is used to obtain a partial solution to the tangential Hilbert 16th problem. We establish upper bounds for the number of zeros of arbitrary Abelian integrals on a positive distance from the critical locus. Under the additional assumption that the critical values of the Hamiltonian are distant from each other (after a proper normalization), we were…
Godbillon–Vey sequence and Françoise algorithm
Abstract We consider foliations given by deformations d F + ϵ ω of exact forms dF in C 2 in a neighborhood of a family of cycles γ ( t ) ⊂ F − 1 ( t ) . In 1996 Francoise gave an algorithm for calculating the first nonzero term of the displacement function Δ along γ of such deformations. This algorithm recalls the well-known Godbillon–Vey sequences discovered in 1971 for investigation of integrability of a form ω. In this paper, we establish the correspondence between the two approaches and translate some results by Casale relating types of integrability for finite Godbillon–Vey sequences to the Francoise algorithm settings.