0000000000247927

AUTHOR

Dmitry Novikov

0000-0002-9314-3304

showing 6 related works from this author

Pseudo-abelian integrals: Unfolding generic exponential case

2009

The search for bounds on the number of zeroes of Abelian integrals is motivated, for instance, by a weak version of Hilbert's 16th problem (second part). In that case one considers planar polynomial Hamiltonian perturbations of a suitable polynomial Hamiltonian system, having a closed separatrix bounding an area filled by closed orbits and an equilibrium. Abelian integrals arise as the first derivative of the displacement function with respect to the energy level. The existence of a bound on the number of zeroes of these integrals has been obtained by A. N. Varchenko [Funktsional. Anal. i Prilozhen. 18 (1984), no. 2, 14–25 ; and A. G. Khovanskii [Funktsional. Anal. i Prilozhen. 18 (1984), n…

PolynomialPure mathematicsDegree (graph theory)Applied MathematicsFunction (mathematics)Dynamical Systems (math.DS)Term (logic)Exponential functionMathematics - Classical Analysis and ODEsBounded functionPiClassical Analysis and ODEs (math.CA)FOS: Mathematicspseudo-abelian integral; Darboux integrableAbelian groupMathematics - Dynamical Systems34C07 34C08AnalysisMathematicsJournal of Differential Equations
researchProduct

Infinite orbit depth and length of Melnikov functions

2019

Abstract In this paper we study polynomial Hamiltonian systems d F = 0 in the plane and their small perturbations: d F + ϵ ω = 0 . The first nonzero Melnikov function M μ = M μ ( F , γ , ω ) of the Poincare map along a loop γ of d F = 0 is given by an iterated integral [3] . In [7] , we bounded the length of the iterated integral M μ by a geometric number k = k ( F , γ ) which we call orbit depth. We conjectured that the bound is optimal. Here, we give a simple example of a Hamiltonian system F and its orbit γ having infinite orbit depth. If our conjecture is true, for this example there should exist deformations d F + ϵ ω with arbitrary high length first nonzero Melnikov function M μ along…

PolynomialDynamical Systems (math.DS)Iterated integrals01 natural sciencesHamiltonian system03 medical and health sciences0302 clinical medicineFOS: MathematicsCenter problem030212 general & internal medicine0101 mathematicsMathematics - Dynamical Systems[MATH]Mathematics [math]Mathematical PhysicsMathematical physicsPoincaré mapPhysicsConjecturePlane (geometry)Applied Mathematics010102 general mathematicsMSC : primary 34C07 ; secondary 34C05 ; 34C08Loop (topology)Bounded functionMAPOrbit (control theory)Analysis34C07 34C05 34C08
researchProduct

Nilpotence of orbits under monodromy and the length of Melnikov functions

2021

Abstract Let F ∈ ℂ [ x , y ] be a polynomial, γ ( z ) ∈ π 1 ( F − 1 ( z ) ) a non-trivial cycle in a generic fiber of F and let ω be a polynomial 1-form, thus defining a polynomial deformation d F + e ω = 0 of the integrable foliation given by F . We study different invariants: the orbit depth k , the nilpotence class n , the derivative length d associated with the couple ( F , γ ) . These invariants bind the length l of the first nonzero Melnikov function of the deformation d F + e ω along γ . We analyze the variation of the aforementioned invariants in a simple but informative example, in which the polynomial F is defined by a product of four lines. We study as well the relation of this b…

PhysicsPure mathematicsSequencePolynomialConjectureMelnikov functionAbelian integrals010102 general mathematicsStatistical and Nonlinear PhysicsIterated integralsCondensed Matter Physics01 natural sciencesNilpotence classFoliationDisplacement functionLimit cyclesMonodromySimple (abstract algebra)[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]Product (mathematics)0103 physical sciences010307 mathematical physics0101 mathematicsOrbit (control theory)ComputingMilieux_MISCELLANEOUS
researchProduct

Tangential Hilbert problem for perturbations of hyperelliptic Hamiltonian systems

1999

The tangential Hilbert 16th problem is to place an upper bound for the number of isolated ovals of algebraic level curves { H ( x , y ) = const } \{H(x,y)=\operatorname {const}\} over which the integral of a polynomial 1-form P ( x , y ) d x + Q ( x , y ) d y P(x,y)\,dx+Q(x,y)\,dy (the Abelian integral) may vanish, the answer to be given in terms of the degrees n = deg ⁡ H n=\deg H and d = max ( deg ⁡ P , deg ⁡ Q ) d=\max (\deg P,\deg Q) . We describe an algorithm producing this upper bound in the form of a primitive recursive (in fact, elementary) function of n n and d d for the particular case of hyperelliptic polynomials H ( x , y ) = y 2 + U ( x ) H(x,y)=y^2+U(x) under the additional as…

CombinatoricsAbelian integralPolynomialGeneral MathematicsLimit cycleSuperintegrable Hamiltonian systemAlgebraic curveAbelian groupAlgebraic numberMathematicsHamiltonian systemElectronic Research Announcements of the American Mathematical Society
researchProduct

Redundant Picard–Fuchs System for Abelian Integrals

2001

We derive an explicit system of Picard-Fuchs differential equations satisfied by Abelian integrals of monomial forms and majorize its coefficients. A peculiar feature of this construction is that the system admitting such explicit majorants, appears only in dimension approximately two times greater than the standard Picard-Fuchs system. The result is used to obtain a partial solution to the tangential Hilbert 16th problem. We establish upper bounds for the number of zeros of arbitrary Abelian integrals on a positive distance from the critical locus. Under the additional assumption that the critical values of the Hamiltonian are distant from each other (after a proper normalization), we were…

MonomialPure mathematicsDynamical systems theoryDifferential equationDynamical Systems (math.DS)symbols.namesakeFOS: MathematicsMathematics - Dynamical SystemsAbelian groupComplex Variables (math.CV)Complex quadratic polynomialMathematicsDiscrete mathematicsMathematics - Complex Variables14D0514K20Applied Mathematics32S4034C0834C07symbolsEquivariant mapLocus (mathematics)Hamiltonian (quantum mechanics)32S2034C07; 34C08; 32S40; 14D05; 14K20; 32S20AnalysisJournal of Differential Equations
researchProduct

Godbillon–Vey sequence and Françoise algorithm

2019

Abstract We consider foliations given by deformations d F + ϵ ω of exact forms dF in C 2 in a neighborhood of a family of cycles γ ( t ) ⊂ F − 1 ( t ) . In 1996 Francoise gave an algorithm for calculating the first nonzero term of the displacement function Δ along γ of such deformations. This algorithm recalls the well-known Godbillon–Vey sequences discovered in 1971 for investigation of integrability of a form ω. In this paper, we establish the correspondence between the two approaches and translate some results by Casale relating types of integrability for finite Godbillon–Vey sequences to the Francoise algorithm settings.

SequenceFrançoise algorithmGeneral Mathematics010102 general mathematicsTerm (logic)IntegrabilityMelnikov functions01 natural sciencesMathematics::K-Theory and HomologyDisplacement functionMAP0101 mathematics[MATH]Mathematics [math]AlgorithmGodbillon–Vey sequenceMathematics
researchProduct