0000000000248033

AUTHOR

Francis X. Giraldo

Comparison between adaptive and uniform discontinuous Galerkin simulations in dry 2D bubble experiments

Accepted by the Journal of Computational Physics Adaptive mesh refinement generally aims to increase computational efficiency without compromising the accuracy of the numerical solution. However it is an open question in which regions the spatial resolution can actually be coarsened without affecting the accuracy of the result. This question is investigated for a specific example of dry atmospheric convection, namely the simulation of warm air bubbles. For this purpose a novel numerical model is developed that is tailored towards this specific application. The compressible Euler equations are solved with a Discontinuous Galerkin method. Time integration is done with an IMEXmethod and the dy…

research product

Adaptive discontinuous evolution Galerkin method for dry atmospheric flow

We present a new adaptive genuinely multidimensional method within the framework of the discontinuous Galerkin method. The discontinuous evolution Galerkin (DEG) method couples a discontinuous Galerkin formulation with approximate evolution operators. The latter are constructed using the bicharacteristics of multidimensional hyperbolic systems, such that all of the infinitely many directions of wave propagation are considered explicitly. In order to take into account multiscale phenomena that typically appear in atmospheric flows nonlinear fluxes are split into a linear part governing the acoustic and gravitational waves and a nonlinear part that models advection. Time integration is realiz…

research product