0000000000248361
AUTHOR
Roberto Confalonieri
Intercomparison of instruments for measuring leaf area index over rice
Leaf area index (LAI) is a key biophysical parameter used to determine foliage cover and crop growth in environmental studies in order to assess crop yield. LAI estimates can be classified as direct or indirect methods. Direct methods are destructive, time consuming, and difficult to apply over large fields. Indirect methods are non-destructive and cost-effective due to its portability, accuracy and repeatability. In this study, we compare indirect LAI estimates acquired from two classical instruments such as LAI-2000 and digital cameras for hemispherical photography, with LAI estimates acquired with a smart app (PocketLAI) installed on a mobile smartphone. In this work it is shown that LAI…
Downstream Services for Rice Crop Monitoring in Europe: From Regional to Local Scale
The ERMES agromonitoring system for rice cultivations integrates EO data at different resolutions, crop models, and user-provided in situ data in a unified system, which drives two operational downstream services for rice monitoring. The first is aimed at providing information concerning the behavior of the current season at regional/rice district scale, while the second is dedicated to provide farmers with field-scale data useful to support more efficient and environmentally friendly crop practices. In this contribution, we describe the main characteristics of the system, in terms of overall architecture, technological solutions adopted, characteristics of the developed products, and funct…
Multitemporal Monitoring of Plant Area Index in the Valencia Rice District with PocketLAI
Leaf area index (LAI) is a key biophysical parameter used to determine foliage cover and crop growth in environmental studies in order to assess crop yield. Frequently, plant canopy analyzers (LAI-2000) and digital cameras for hemispherical photography (DHP) are used for indirect effective plant area index (PAI(eff)) estimates. Nevertheless, these instruments are expensive and have the disadvantages of low portability and maintenance. Recently, a smartphone app called PocketLAI was presented and tested for acquiring PAI(eff) measurements. It was used during an entire rice season for indirect PAI(eff) estimations and for deriving reference high-resolution PAI(eff) maps. Ground PAI(eff) value…
A high-resolution, integrated system for rice yield forecasting at district level
Abstract To meet the growing demands from public and private stakeholders for early yield estimates, a high-resolution (2 km × 2 km) rice yield forecasting system based on the integration of the WARM model and remote sensing (RS) technologies was developed. RS was used to identify rice-cropped area and to derive spatially distributed sowing dates, and for the dynamic assimilation of RS-derived leaf area index (LAI) data within the crop model. The system—tested for the main European rice production districts in Italy, Greece, and Spain—performed satisfactorily; >66% of the inter-annual yield variability was explained in six out of eight combinations of ecotype × district, with a maximum of 8…
Drug Prescription and Delirium in Older Inpatients: Results From the Nationwide Multicenter Italian Delirium Day 2015-2016
Objective This study aimed to evaluate the association between polypharmacy and delirium, the association of specific drug categories with delirium, and the differences in drug-delirium association between medical and surgical units and according to dementia diagnosis. Methods Data were collected during 2 waves of Delirium Day, a multicenter delirium prevalence study including patients (aged 65 years or older) admitted to acute and long-term care wards in Italy (2015-2016); in this study, only patients enrolled in acute hospital wards were selected (n = 4,133). Delirium was assessed according to score on the 4 "A's" Test. Prescriptions were classified by main drug categories; polypharmacy w…
"Delirium Day": a nationwide point prevalence study of delirium in older hospitalized patients using an easy standardized diagnostic tool
Background To date, delirium prevalence in adult acute hospital populations has been estimated generally from pooled findings of single-center studies and/or among specific patient populations. Furthermore, the number of participants in these studies has not exceeded a few hundred. To overcome these limitations, we have determined, in a multicenter study, the prevalence of delirium over a single day among a large population of patients admitted to acute and rehabilitation hospital wards in Italy. Methods This is a point prevalence study (called “Delirium Day”) including 1867 older patients (aged 65 years or more) across 108 acute and 12 rehabilitation wards in Italian hospitals. Delirium wa…
Testing Multi-Sensors Time Series of Lai Estimates to Monitor Rice Phenology: Preliminary Results
Timely and accurate information on crop growth and seasonal dynamics are increasingly needed to develop monitoring systems aimed to detect seasonal anomalies, support site specific management and estimate crop yield at the end of the season. In particular, frequent decametric information nowadays being provided exploiting the new generation of Earth Observation (EO) platforms are fundamental for farm level monitoring. This study presents an analysis aimed at fully exploiting dense time series of EO data derived from the combined use of ESA Sentinel-2A and NASA Landsat-7/8 imageries for crop phenological monitoring. Decametric Leaf Area Index (LAI) maps were generated for the year 2016 by in…
Downscaling rice yield simulation at sub-field scale using remotely sensed LAI data
Abstract Crop modeling and remote sensing are key tools to gain deeper understanding on cropping system dynamics and, ultimately, to increase the sustainability of agricultural productions. This study presents a system to estimate rice yields at sub-field scale based on the integration of a biophysical model and remotely sensed products. Leaf area index (LAI) data derived from decametric optical imageries (i.e., Landsat-8, Landsat-7 and Sentinel–2A) were assimilated into the WARM rice model via automatic recalibration of crop parameters at a fine spatial resolution (30 m × 30 m), targeting the lowest error between simulated and remotely sensed LAI. The performance of the system was evaluate…
Membre du comité d'organisation scientifique
comité d'organisation scientifique; International audience