0000000000248626

AUTHOR

David Haberthür

0000-0003-3388-9187

showing 2 related works from this author

Automated segmentation and description of the internal morphology of human permanent teeth by means of micro-CT

2020

High-resolution micro-computed tomography is a powerful tool to analyze and visualize the internal morphology of human permanent teeth. It is increasingly used for investigation of epidemiological questions to provide the dentist with the necessary information required for successful endodontic treatment. The aim of the present paper was to propose an image processing method to automate parts of the work needed to fully describe the internal morphology of human permanent teeth. One hundred and four human teeth were scanned on a high-resolution micro-CT scanner using an automatic specimen changer. Python code in a Jupyter notebook was used to verify and process the scans, prepare the dataset…

Micro-CTScannerComputer scienceInternal tooth morphologyAutomated segmentationRoot canal configurationImage processing610 Medicine & health03 medical and health sciences0302 clinical medicinestomatognathic systemImage Processing Computer-AssistedMedicineHumansComputer visionTooth Root610 Medicine & healthMicro ctGeneral Dentistry030304 developmental biologycomputer.programming_languagePermanent teeth0303 health sciencesbusiness.industryResearchBiomedical image analysisProcess (computing)Reproducibility of ResultsRK1-715030206 dentistryX-Ray MicrotomographyPhysiological foramen geometryPython (programming language)Dentition PermanentAutomated segmentationstomatognathic diseasesDentistryTomographyArtificial intelligenceDental Pulp Cavitybusinesscomputer
researchProduct

Microstructural evolution of gas hydrates in sedimentary matrices observed with synchrotron X-ray computed tomographic microscopy

2015

The formation process of gas hydrates in sedimentary matrices is of crucial importance for the physical and transport properties of the resulting aggregates. This process has never been observed in situ at submicron resolution. Here we report on synchrotron-based microtomographic studies by which the nucleation and growth processes of gas hydrate were observed at 276 K in various sedimentary matrices such as natural quartz (with and without admixtures of montmorillonite type clay) or glass beads with different surface properties, at varying water saturation. Both juvenile water and metastably gas-enriched water obtained from gas hydrate decomposition was used. Xenon gas was employed to enha…

Clathrate hydrateNucleationMineralogychemistry.chemical_elementMicrostructureMicrometrechemistry.chemical_compoundGeophysicsMontmorilloniteXenonchemistryGeochemistry and PetrologySedimentary rockPhysics::Chemical PhysicsQuartzGeologyGeochemistry, Geophysics, Geosystems
researchProduct