0000000000248736

AUTHOR

Pádraig Cunningham

Diversity in search strategies for ensemble feature selection

Ensembles of learnt models constitute one of the main current directions in machine learning and data mining. Ensembles allow us to achieve higher accuracy, which is often not achievable with single models. It was shown theoretically and experimentally that in order for an ensemble to be effective, it should consist of base classifiers that have diversity in their predictions. One technique, which proved to be effective for constructing an ensemble of diverse base classifiers, is the use of different feature subsets, or so-called ensemble feature selection. Many ensemble feature selection strategies incorporate diversity as an objective in the search for the best collection of feature subse…

research product

Handling local concept drift with dynamic integration of classifiers : domain of antibiotic resistance in nosocomial infections

In the real world concepts and data distributions are often not stable but change with time. This problem, known as concept drift, complicates the task of learning a model from data and requires special approaches, different from commonly used techniques, which treat arriving instances as equally important contributors to the target concept. Among the most popular and effective approaches to handle concept drift is ensemble learning, where a set of models built over different time periods is maintained and the best model is selected or the predictions of models are combined. In this paper we consider the use of an ensemble integration technique that helps to better handle concept drift at t…

research product

Search strategies for ensemble feature selection in medical diagnostics

The goal of this paper is to propose, evaluate, and compare four search strategies for ensemble feature selection, and to consider their application to medical diagnostics, with a focus on the problem of the classification of acute abdominal pain. Ensembles of learnt models constitute one of the main current directions in machine learning and data mining. Ensembles allow us to get higher accuracy, sensitivity, and specificity, which are often not achievable with single models. One technique, which proved to be effective for ensemble construction, is feature selection. Lately, several strategies for ensemble feature selection were proposed, including random subspacing, hill-climbing-based se…

research product