0000000000249283

AUTHOR

Daniel Lefebvre

Recognition of unsegmented targets invariant under transformations of intensity.

Images taken in noncooperative environments do not always have targets under the same illumination conditions. There is a need for methods to detect targets independently of the illumination. We propose a technique that yields correlation peaks that are invariant under a linear intensity transformation of object intensity. The new locally adaptive contrast-invariant filter accomplishes this by combining three correlations in a nonlinear way. This method is not only intensity invariant but also has good discrimination and resistance to noise. We present simulation results for various intensity transformations with and without random and correlated noise. When the noise is high enough to thre…

research product

Weighted nonlinear correlation for controlled discrimination capability

We recently demonstrated the high discrimination capability as well as the high sensitivity to small intensity variations of the sliced orthogonal nonlinear generalized (SONG) correlation. This nonlinear correlation has a correlation matrix representation. Previous papers considered only the principal diagonal elements of the correlation matrix. We propose using the off-diagonal non-zero elements of the SONG correlation matrix in order to achieve variable discrimination performance and controlled detection adapted to the gray-scale variations. Moreover, we introduce negative coefficients in order to improve the discrimination properties of the SONG correlation. To control the degree of reco…

research product

Optical implementation of the weighted sliced orthogonal nonlinear generalized correlation for nonuniform illumination conditions.

Optical pattern recognition under variations of illumination is an important issue. The sliced orthogonal nonlinear generalized (SONG) correlation has been proposed as an optical pattern recognition tool to discriminate with high efficiency between objects. But, at the same time, the SONG correlation is very sensitive to gray-scale image variations. In a previous work, we expanded the definition of the SONG correlation to the Weighted SONG (WSONG) correlation to modify the discrimination capability in a controlled way. Here, we propose to use the WSONG when pattern recognition is obtained by means of optical correlation under nonuniform illumination. The calculation of the WSONG correlation…

research product